BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 37113222)

  • 1. Application of cofactors in the regulation of microbial metabolism: A state of the art review.
    Sun Y; Zhang T; Lu B; Li X; Jiang L
    Front Microbiol; 2023; 14():1145784. PubMed ID: 37113222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [ATP regulation strategy and its application in the synthesis of microbial metabolites].
    Chen Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Aug; 36(8):1515-1527. PubMed ID: 32924350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-scale metabolic modelling common cofactors metabolism in microorganisms.
    Xu N; Ye C; Chen X; Liu J; Liu L
    J Biotechnol; 2017 Jun; 251():1-13. PubMed ID: 28385592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.
    Liu J; Li H; Zhao G; Caiyin Q; Qiao J
    J Ind Microbiol Biotechnol; 2018 May; 45(5):313-327. PubMed ID: 29582241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Free Production and Regeneration of Cofactors.
    Suryatin Alim G; Suzuki T; Honda K
    Adv Biochem Eng Biotechnol; 2023; 186():29-49. PubMed ID: 37306696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration.
    Nielsen JR; Weusthuis RA; Huang WE
    Biotechnol Adv; 2023; 63():108102. PubMed ID: 36681133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cofactor engineering for more efficient production of chemicals and biofuels.
    Wang M; Chen B; Fang Y; Tan T
    Biotechnol Adv; 2017 Dec; 35(8):1032-1039. PubMed ID: 28939499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the Outer Membrane Could Facilitate Better Bacterial Performance and Effectively Enhance Poly-3-Hydroxybutyrate Accumulation.
    Wang J; Ma W; Fang Y; Zhang H; Liang H; Liu H; Wang T; Chen S; Ji J; Wang X
    Appl Environ Microbiol; 2021 Nov; 87(23):e0138921. PubMed ID: 34550763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of essential cofactors for
    Intasian P; Sutthaphirom C; Bodeit O; Trisrivirat D; Kimprasoot N; Jaroensuk J; Bakker B; Klipp E; Chaiyen P
    Faraday Discuss; 2024 Jun; ():. PubMed ID: 38836629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors.
    Deng C; Lv X; Li J; Zhang H; Liu Y; Du G; Amaro RL; Liu L
    Metab Eng; 2021 Sep; 67():330-346. PubMed ID: 34329707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of intracellular ATP supply and its application in industrial biotechnology.
    Man Z; Guo J; Zhang Y; Cai Z
    Crit Rev Biotechnol; 2020 Dec; 40(8):1151-1162. PubMed ID: 32862717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae.
    Hou J; Lages NF; Oldiges M; Vemuri GN
    Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli.
    San KY; Bennett GN; Berríos-Rivera SJ; Vadali RV; Yang YT; Horton E; Rudolph FB; Sariyar B; Blackwood K
    Metab Eng; 2002 Apr; 4(2):182-92. PubMed ID: 12009797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomics for biotransformations: Intracellular redox cofactor analysis and enzyme kinetics offer insight into whole cell processes.
    Schroer K; Zelic B; Oldiges M; Lütz S
    Biotechnol Bioeng; 2009 Oct; 104(2):251-60. PubMed ID: 19489025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxisomal Cofactor Transport.
    Plett A; Charton L; Linka N
    Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32806597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 18. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast.
    Chen R; Gao J; Yu W; Chen X; Zhai X; Chen Y; Zhang L; Zhou YJ
    Nat Chem Biol; 2022 May; 18(5):520-529. PubMed ID: 35484257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cofactor modification analysis: a computational framework to identify cofactor specificity engineering targets for strain improvement.
    Lakshmanan M; Chung BK; Liu C; Kim SW; Lee DY
    J Bioinform Comput Biol; 2013 Dec; 11(6):1343006. PubMed ID: 24372035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor engineering for advancing chemical biotechnology.
    Wang Y; San KY; Bennett GN
    Curr Opin Biotechnol; 2013 Dec; 24(6):994-9. PubMed ID: 23611567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.