These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37113242)

  • 1. Facilitative interaction networks in experimental microbial community dynamics.
    Fujita H; Ushio M; Suzuki K; Abe MS; Yamamichi M; Okazaki Y; Canarini A; Hayashi I; Fukushima K; Fukuda S; Kiers ET; Toju H
    Front Microbiol; 2023; 14():1153952. PubMed ID: 37113242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic analysis of ecological niche overlap and community collapse in microbiome dynamics.
    Fujita H; Ushio M; Suzuki K; Abe MS; Yamamichi M; Okazaki Y; Canarini A; Hayashi I; Fukushima K; Fukuda S; Kiers ET; Toju H
    Front Microbiol; 2023; 14():1261137. PubMed ID: 38033594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression.
    Fisher CK; Mehta P
    PLoS One; 2014; 9(7):e102451. PubMed ID: 25054627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation.
    Agler MT; Ruhe J; Kroll S; Morhenn C; Kim ST; Weigel D; Kemen EM
    PLoS Biol; 2016 Jan; 14(1):e1002352. PubMed ID: 26788878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring microbial interactions with their environment from genomic and metagenomic data.
    Brunner JD; Gallegos-Graves LA; Kroeger ME
    PLoS Comput Biol; 2023 Nov; 19(11):e1011661. PubMed ID: 37956203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difficulty in inferring microbial community structure based on co-occurrence network approaches.
    Hirano H; Takemoto K
    BMC Bioinformatics; 2019 Jun; 20(1):329. PubMed ID: 31195956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connect the dots: sketching out microbiome interactions through networking approaches.
    Fabbrini M; Scicchitano D; Candela M; Turroni S; Rampelli S
    Microbiome Res Rep; 2023; 2(4):25. PubMed ID: 38058764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction network rewiring and species' contributions to community-scale flexibility.
    Toju H; Suzuki SS; Baba YG
    PNAS Nexus; 2024 Mar; 3(3):pgae047. PubMed ID: 38444600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MMinte: an application for predicting metabolic interactions among the microbial species in a community.
    Mendes-Soares H; Mundy M; Soares LM; Chia N
    BMC Bioinformatics; 2016 Sep; 17(1):343. PubMed ID: 27590448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Modeling Elucidates the Transactions in the Rumen Microbiome and the Shifts Upon Virome Interactions.
    Islam MM; Fernando SC; Saha R
    Front Microbiol; 2019; 10():2412. PubMed ID: 31866953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction generalisation and demographic feedbacks drive the resilience of plant-insect networks to extinctions.
    Maia KP; Marquitti FMD; Vaughan IP; Memmott J; Raimundo RLG
    J Anim Ecol; 2021 Sep; 90(9):2109-2121. PubMed ID: 34048028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative stable states, nonlinear behavior, and predictability of microbiome dynamics.
    Fujita H; Ushio M; Suzuki K; Abe MS; Yamamichi M; Iwayama K; Canarini A; Hayashi I; Fukushima K; Fukuda S; Kiers ET; Toju H
    Microbiome; 2023 Mar; 11(1):63. PubMed ID: 36978146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core species and interactions prominent in fish-associated microbiome dynamics.
    Yajima D; Fujita H; Hayashi I; Shima G; Suzuki K; Toju H
    Microbiome; 2023 Mar; 11(1):53. PubMed ID: 36941627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2.
    Zhou J; Deng Y; Luo F; He Z; Yang Y
    mBio; 2011; 2(4):. PubMed ID: 21791581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic and stochastic processes generating alternative states of microbiomes.
    Hayashi I; Fujita H; Toju H
    ISME Commun; 2024 Jan; 4(1):ycae007. PubMed ID: 38415200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities?
    Freilich MA; Wieters E; Broitman BR; Marquet PA; Navarrete SA
    Ecology; 2018 Mar; 99(3):690-699. PubMed ID: 29336480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.
    Berry D; Widder S
    Front Microbiol; 2014; 5():219. PubMed ID: 24904535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Reveals Missing Edges and Putative Interaction Mechanisms in Microbial Ecosystem Networks.
    DiMucci D; Kon M; Segrè D
    mSystems; 2018; 3(5):. PubMed ID: 30417106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain Structure and Dynamics Revealed by Targeted Deep Sequencing of the Honey Bee Gut Microbiome.
    Bobay LM; Wissel EF; Raymann K
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32848005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Interactions Drive Distinct Taxonomic and Potential Metabolic Responses to Habitats in Karst Cave Ecosystem.
    Ma L; Huang X; Wang H; Yun Y; Cheng X; Liu D; Lu X; Qiu X
    Microbiol Spectr; 2021 Oct; 9(2):e0115221. PubMed ID: 34494852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.