BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37113468)

  • 1. Virtual Screening and Biological Evaluation of Novel Low Molecular Weight Protein Tyrosine Phosphatase Inhibitor for the Treatment of Insulin Resistance.
    Feng B; Dong X; Liu Z; Zhang J; Liu H; Xu Y
    Drug Des Devel Ther; 2023; 17():1191-1201. PubMed ID: 37113468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of low-molecular-weight protein tyrosine phosphatase shows limited improvement in glucose tolerance but causes mild cardiac hypertrophy in mice.
    Jensen-Cody S; Coyne ES; Ding X; Sebin A; Vogel J; Goldstein J; Rosahl TW; Zhou HH; Jacobs H; Champy MF; About GB; Talukdar S; Zhou Y
    Am J Physiol Endocrinol Metab; 2022 Jun; 322(6):E517-E527. PubMed ID: 35403438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Orally Bioavailable Purine-Based Inhibitors of the Low-Molecular-Weight Protein Tyrosine Phosphatase.
    Stanford SM; Diaz MA; Ardecky RJ; Zou J; Roosild T; Holmes ZJ; Nguyen TP; Hedrick MP; Rodiles S; Guan A; Grotegut S; Santelli E; Chung TDY; Jackson MR; Bottini N; Pinkerton AB
    J Med Chem; 2021 May; 64(9):5645-5653. PubMed ID: 33914534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the Low Molecular Weight Protein Tyrosine Phosphatase (LMPTP) as a Potential Therapeutic Strategy for Hepatic Progenitor Cells Lipotoxicity-Short Communication.
    Alicka M; Kornicka-Garbowska K; Roecken M; Marycz K
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The low molecular weight protein tyrosine phosphatase promotes adipogenesis and subcutaneous adipocyte hypertrophy.
    Stanford SM; Collins M; Diaz MA; Holmes ZJ; Gries P; Bliss MR; Lodi A; Zhang V; Tiziani S; Bottini N
    J Cell Physiol; 2021 Sep; 236(9):6630-6642. PubMed ID: 33615467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase.
    Stanford SM; Aleshin AE; Zhang V; Ardecky RJ; Hedrick MP; Zou J; Ganji SR; Bliss MR; Yamamoto F; Bobkov AA; Kiselar J; Liu Y; Cadwell GW; Khare S; Yu J; Barquilla A; Chung TDY; Mustelin T; Schenk S; Bankston LA; Liddington RC; Pinkerton AB; Bottini N
    Nat Chem Biol; 2017 Jun; 13(6):624-632. PubMed ID: 28346406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nepetin Acts as a Multi-Targeting Inhibitor of Protein Tyrosine Phosphatases Relevant to Insulin Resistance.
    Yoon SY; Ahn D; Kim JK; Seo SO; Chung SJ
    Chem Biodivers; 2022 Jan; 19(1):e202100600. PubMed ID: 34725898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico structure-based design of a potent and selective small peptide inhibitor of protein tyrosine phosphatase 1B, a novel therapeutic target for obesity and type 2 diabetes mellitus: a computer modeling approach.
    Rao GS; Ramachandran MV; Bajaj JS
    J Biomol Struct Dyn; 2006 Feb; 23(4):377-84. PubMed ID: 16363874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting prostate tumor low-molecular weight tyrosine phosphatase for oxidation-sensitizing therapy.
    Stanford SM; Nguyen TP; Chang J; Zhao Z; Hackman GL; Santelli E; Sanders CM; Katiki M; Dondossola E; Brauer BL; Diaz MA; Zhan Y; Ramsey SH; Watson PA; Sankaran B; Paindelli C; Parietti V; Mikos AG; Lodi A; Bagrodia A; Elliott A; McKay RR; Murali R; Tiziani S; Kettenbach AN; Bottini N
    Sci Adv; 2024 Feb; 10(5):eadg7887. PubMed ID: 38295166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of potential bioisosteric replacements for the carboxyl groups of peptidomimetic inhibitors of protein tyrosine phosphatase 1B: identification of a tetrazole-containing inhibitor with cellular activity.
    Liljebris C; Larsen SD; Ogg D; Palazuk BJ; Bleasdale JE
    J Med Chem; 2002 Apr; 45(9):1785-98. PubMed ID: 11960490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating virtual and biochemical screening for protein tyrosine phosphatase inhibitor discovery.
    Martin KR; Narang P; Medina-Franco JL; Meurice N; MacKeigan JP
    Methods; 2014 Jan; 65(2):219-28. PubMed ID: 23969317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential impact of cold and hot tea extracts on tyrosine phosphatases regulating insulin receptor activity: a focus on PTP1B and LMW-PTP.
    Genovese M; Luti S; Pardella E; Vivoli-Vega M; Pazzagli L; Parri M; Caselli A; Cirri P; Paoli P
    Eur J Nutr; 2022 Jun; 61(4):1905-1918. PubMed ID: 35066640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, biological activity and structure-activity relationships of new benzoic acid-based protein tyrosine phosphatase inhibitors endowed with insulinomimetic effects in mouse C2C12 skeletal muscle cells.
    Ottanà R; Maccari R; Mortier J; Caselli A; Amuso S; Camici G; Rotondo A; Wolber G; Paoli P
    Eur J Med Chem; 2014 Jan; 71():112-27. PubMed ID: 24287560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions.
    Reddy RH; Kim H; Cha S; Lee B; Kim YJ
    J Microbiol Biotechnol; 2017 May; 27(5):878-895. PubMed ID: 28238001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the low molecular weight phosphotyrosine phosphatase by phosphorylation at tyrosines 131 and 132.
    Tailor P; Gilman J; Williams S; Couture C; Mustelin T
    J Biol Chem; 1997 Feb; 272(9):5371-4. PubMed ID: 9038134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.
    Zhang ZY
    Acc Chem Res; 2017 Jan; 50(1):122-129. PubMed ID: 27977138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Integrated Computational Approach for Plant-Based Protein Tyrosine Phosphatase Non-Receptor Type 1 Inhibitors.
    Bibi S; Sakata K
    Curr Comput Aided Drug Des; 2017 Nov; 13(4):319-335. PubMed ID: 28382867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyrtiosal, a PTP1B inhibitor from the marine sponge Hyrtios erectus, shows extensive cellular effects on PI3K/AKT activation, glucose transport, and TGFbeta/Smad2 signaling.
    Sun T; Wang Q; Yu Z; Zhang Y; Guo Y; Chen K; Shen X; Jiang H
    Chembiochem; 2007 Jan; 8(2):187-93. PubMed ID: 17183521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis.
    Adams J; Thornton BP; Tabernero L
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830087
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.