These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37113502)

  • 1. Selection principles of polymeric frameworks for solid-state electrolytes of non-aqueous aluminum-ion batteries.
    Yu Z; Xie Y; Wang W; Hong J; Ge J
    Front Chem; 2023; 11():1190102. PubMed ID: 37113502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes.
    Zhu G; Angell M; Pan CJ; Lin MC; Chen H; Huang CJ; Lin J; Achazi AJ; Kaghazchi P; Hwang BJ; Dai H
    RSC Adv; 2019 Apr; 9(20):11322-11330. PubMed ID: 35520252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy.
    Gordon LW; Wang J; Messinger RJ
    J Magn Reson; 2023 Mar; 348():107374. PubMed ID: 36706465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Cost Gel Polymer Electrolyte for High-Performance Aluminum-Ion Batteries.
    Liu Z; Wang X; Liu Z; Zhang S; Lv Z; Cui Y; Du L; Li K; Zhang G; Lin MC; Du H
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28164-28170. PubMed ID: 34102060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroaluminate Gel Electrolytes Prepared with Copolymers Based on Imidazolium Ionic Liquids and Deep Eutectic Solvent AlCl
    Pablos JL; Tiemblo P; Ellis G; Corrales T
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33801632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric Electrolytes for Solid-state Lithium Ion Batteries: Structure Design, Electrochemical Properties and Cell Performances.
    Su G; Zhang X; Xiao M; Wang S; Huang S; Han D; Meng Y
    ChemSusChem; 2024 Feb; 17(3):e202300293. PubMed ID: 37771268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring and Enhancing the Ionic Conductivity of Chloroaluminate Electrolytes for Al-Ion Batteries.
    Lucio AJ; Sumarlan I; Bulmer E; Efimov I; Viles S; Hillman AR; Zaleski CJ; Ryder KS
    J Phys Chem C Nanomater Interfaces; 2023 Jul; 127(28):13866-13876. PubMed ID: 37492190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Dimensional Covalent Organic Frameworks with Enhanced Aluminum Storage Properties.
    Lu H; Ning F; Jin R; Teng C; Wang Y; Xi K; Zhou D; Xue G
    ChemSusChem; 2020 Jul; 13(13):3447-3454. PubMed ID: 32368825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrolytes for Aluminum-Ion Batteries: Progress and Outlook.
    Liu W; Li L; Yue S; Jia S; Wang C; Zhang D
    Chemistry; 2024 Oct; 30(55):e202402017. PubMed ID: 39073738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review on Polymer-Based Composite Electrolytes for Lithium Batteries.
    Yao P; Yu H; Ding Z; Liu Y; Lu J; Lavorgna M; Wu J; Liu X
    Front Chem; 2019; 7():522. PubMed ID: 31440498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Study of Guanidine-, Acetamidine- and Urea-Based Chloroaluminate Electrolytes for an Aluminum Battery.
    Sumarlan I; Kunverji A; Lucio AJ; Hillman AR; Ryder KS
    J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(38):18891-18901. PubMed ID: 37791096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS
    Hu Y; Luo B; Ye D; Zhu X; Lyu M; Wang L
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable Quasi-Solid-State Aluminum Batteries.
    Huang Z; Song WL; Liu Y; Wang W; Wang M; Ge J; Jiao H; Jiao S
    Adv Mater; 2022 Feb; 34(8):e2104557. PubMed ID: 34877722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the Extraordinary Rate and Cycling Performance of Phenanthrenequinone in Aluminum-Complex-Ion Batteries.
    Yoo DJ; Choi JW
    J Phys Chem Lett; 2020 Mar; 11(6):2384-2392. PubMed ID: 32126165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries.
    Forsyth M; Porcarelli L; Wang X; Goujon N; Mecerreyes D
    Acc Chem Res; 2019 Mar; 52(3):686-694. PubMed ID: 30801170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery.
    Lee D; Lee G; Tak Y
    Nanotechnology; 2018 Sep; 29(36):36LT01. PubMed ID: 29916812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
    Osada I; de Vries H; Scrosati B; Passerini S
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):500-13. PubMed ID: 26783056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Ionogel Electrolytes for Advanced Lithium Secondary Batteries: Developments and Challenges.
    Hu Y; Yu L; Meng T; Zhou S; Sui X; Hu X
    Chem Asian J; 2022 Dec; 17(23):e202200794. PubMed ID: 36177983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous Binders Compatible with Ionic Liquid Electrolyte for High-Performance Aluminum-Ion Batteries.
    Yang Z; Guo M; Meng P; Jiang M; Qiu X; Zhang J; Fu C
    Chemistry; 2023 Apr; 29(22):e202203546. PubMed ID: 36734189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.