These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37113591)

  • 21. A macro finite-element formulation for cardiac electrophysiology simulations using hybrid unstructured grids.
    Rocha BM; Kickinger F; Prassl AJ; Haase G; Vigmond EJ; dos Santos RW; Zaglmayr S; Plank G
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1055-65. PubMed ID: 20699206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern.
    Zahid S; Cochet H; Boyle PM; Schwarz EL; Whyte KN; Vigmond EJ; Dubois R; Hocini M; Haïssaguerre M; Jaïs P; Trayanova NA
    Cardiovasc Res; 2016 Jun; 110(3):443-54. PubMed ID: 27056895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unsupervised stochastic learning and reduced order modeling for global sensitivity analysis in cardiac electrophysiology models.
    El Moçayd N; Belhamadia Y; Seaid M
    Comput Methods Programs Biomed; 2024 Oct; 255():108311. PubMed ID: 39032242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homogenisation of the Local Thermal Conductivity in Injection-Moulded Short Fibre Reinforced Composites.
    Mokarizadehhaghighishirazi M; Buffel B; Lomov SV; Desplentere F
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational homogenisation based extraction of transverse tensile cohesive responses of cortical bone tissue.
    Xing W; Miller T; Wildy S
    Biomech Model Mechanobiol; 2022 Feb; 21(1):147-161. PubMed ID: 34647217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semi-implicit Non-conforming Finite-Element Schemes for Cardiac Electrophysiology: A Framework for Mesh-Coarsening Heart Simulations.
    Jilberto J; Hurtado DE
    Front Physiol; 2018; 9():1513. PubMed ID: 30425648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamical modeling of tissue electroporation.
    Voyer D; Silve A; Mir LM; Scorretti R; Poignard C
    Bioelectrochemistry; 2018 Feb; 119():98-110. PubMed ID: 28934689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Balancing conduction velocity error in cardiac electrophysiology using a modified quadrature approach.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2022 May; 38(5):e3589. PubMed ID: 35266643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems.
    Prassl AJ; Kickinger F; Ahammer H; Grau V; Schneider JE; Hofer E; Vigmond EJ; Trayanova NA; Plank G
    IEEE Trans Biomed Eng; 2009 May; 56(5):1318-30. PubMed ID: 19203877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.
    Heidenreich EA; Ferrero JM; Doblaré M; Rodríguez JF
    Ann Biomed Eng; 2010 Jul; 38(7):2331-45. PubMed ID: 20238165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From Millimeters to Micrometers; Re-introducing Myocytes in Models of Cardiac Electrophysiology.
    Jæger KH; Edwards AG; Giles WR; Tveito A
    Front Physiol; 2021; 12():763584. PubMed ID: 34777021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A numerical method for cardiac mechanoelectric simulations.
    Pathmanathan P; Whiteley JP
    Ann Biomed Eng; 2009 May; 37(5):860-73. PubMed ID: 19263223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparative study of graph-based, eikonal, and monodomain simulations for the estimation of cardiac activation times.
    Wallman M; Smith NP; Rodriguez B
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1739-48. PubMed ID: 22491074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homogenised and pasteurised human milk: lipid profile and effect as a supplement in the enteral diet of Wistar rats.
    Correa KP; Silva MET; Ribeiro OS; Matta SLP; Peluzio MDCG; Oliveira EB; Coimbra JSDR
    Br J Nutr; 2022 Mar; 127(5):711-721. PubMed ID: 33902762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arrhythmia dynamics in computational models of the atria following virtual ablation of re-entrant drivers.
    Hakim JB; Murphy MJ; Trayanova NA; Boyle PM
    Europace; 2018 Nov; 20(suppl_3):iii45-iii54. PubMed ID: 30476053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-order finite element methods for cardiac monodomain simulations.
    Vincent KP; Gonzales MJ; Gillette AK; Villongco CT; Pezzuto S; Omens JH; Holst MJ; McCulloch AD
    Front Physiol; 2015; 6():217. PubMed ID: 26300783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A numerical study of different projection-based model reduction techniques applied to computational homogenisation.
    Soldner D; Brands B; Zabihyan R; Steinmann P; Mergheim J
    Comput Mech; 2017; 60(4):613-625. PubMed ID: 31258232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach.
    Levrero-Florencio F; Margetts L; Sales E; Xie S; Manda K; Pankaj P
    J Mech Behav Biomed Mater; 2016 Aug; 61():384-396. PubMed ID: 27108348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.