These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 37113673)
1. Mechanostat parameters estimated from time-lapsed Marques FC; Boaretti D; Walle M; Scheuren AC; Schulte FA; Müller R Front Bioeng Biotechnol; 2023; 11():1140673. PubMed ID: 37113673 [TBL] [Abstract][Full Text] [Related]
2. Mechano-Regulation of Trabecular Bone Adaptation Is Controlled by the Local Scheuren AC; Vallaster P; Kuhn GA; Paul GR; Malhotra A; Kameo Y; Müller R Front Bioeng Biotechnol; 2020; 8():566346. PubMed ID: 33154964 [TBL] [Abstract][Full Text] [Related]
3. Mechanoregulation analysis of bone formation in tissue engineered constructs requires a volumetric method using time-lapsed micro-computed tomography. Griesbach JK; Schulte FA; Schädli GN; Rubert M; Müller R Acta Biomater; 2024 Apr; 179():149-163. PubMed ID: 38492908 [TBL] [Abstract][Full Text] [Related]
4. Bone Mechanoregulation Allows Subject-Specific Load Estimation Based on Time-Lapsed Micro-CT and HR-pQCT Walle M; Marques FC; Ohs N; Blauth M; Müller R; Collins CJ Front Bioeng Biotechnol; 2021; 9():677985. PubMed ID: 34249883 [TBL] [Abstract][Full Text] [Related]
5. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411 [TBL] [Abstract][Full Text] [Related]
6. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation. Webster D; Wirth A; van Lenthe GH; Müller R Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383 [TBL] [Abstract][Full Text] [Related]
7. Precision of bone mechanoregulation assessment in humans using longitudinal high-resolution peripheral quantitative computed tomography in vivo. Walle M; Whittier DE; Schenk D; Atkins PR; Blauth M; Zysset P; Lippuner K; Müller R; Collins CJ Bone; 2023 Jul; 172():116780. PubMed ID: 37137459 [TBL] [Abstract][Full Text] [Related]
8. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment. Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278 [TBL] [Abstract][Full Text] [Related]
9. In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography. Schulte FA; Lambers FM; Webster DJ; Kuhn G; Müller R Bone; 2011 Dec; 49(6):1166-72. PubMed ID: 21890010 [TBL] [Abstract][Full Text] [Related]
10. The Role of the Loading Condition in Predictions of Bone Adaptation in a Mouse Tibial Loading Model. Cheong VS; Kadirkamanathan V; Dall'Ara E Front Bioeng Biotechnol; 2021; 9():676867. PubMed ID: 34178966 [TBL] [Abstract][Full Text] [Related]
11. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Schulte FA; Lambers FM; Kuhn G; Müller R Bone; 2011 Mar; 48(3):433-42. PubMed ID: 20950723 [TBL] [Abstract][Full Text] [Related]
12. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling. Guha I; Zhang X; Rajapakse CS; Chang G; Saha PK Med Phys; 2022 Jun; 49(6):3886-3899. PubMed ID: 35319784 [TBL] [Abstract][Full Text] [Related]
13. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response. Birkhold AI; Razi H; Duda GN; Checa S; Willie BM Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894 [TBL] [Abstract][Full Text] [Related]
14. Hip joint load prediction using inverse bone remodeling with homogenized FE models: Comparison to micro-FE and influence of material modeling strategy. Bachmann S; Pahr DH; Synek A Comput Methods Programs Biomed; 2023 Jun; 236():107549. PubMed ID: 37084528 [TBL] [Abstract][Full Text] [Related]
15. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Lukas C; Ruffoni D; Lambers FM; Schulte FA; Kuhn G; Kollmannsberger P; Weinkamer R; Müller R Bone; 2013 Sep; 56(1):55-60. PubMed ID: 23684803 [TBL] [Abstract][Full Text] [Related]
16. Cortical bone adaptation response is region specific, but not peak load dependent: insights from Miller CJ; Pickering E; Martelli S; Dall'Ara E; Delisser P; Pivonka P Biomech Model Mechanobiol; 2024 Feb; 23(1):287-304. PubMed ID: 37851203 [TBL] [Abstract][Full Text] [Related]
17. A novel algorithm to predict bone changes in the mouse tibia properties under physiological conditions. Cheong VS; Campos Marin A; Lacroix D; Dall'Ara E Biomech Model Mechanobiol; 2020 Jun; 19(3):985-1001. PubMed ID: 31786678 [TBL] [Abstract][Full Text] [Related]
18. Verification of the mechanostat theory in mandible remodeling after tooth extraction: animal study and numerical modeling. Mahnama A; Tafazzoli-Shadpour M; Geramipanah F; Mehdi Dehghan M J Mech Behav Biomed Mater; 2013 Apr; 20():354-62. PubMed ID: 23523125 [TBL] [Abstract][Full Text] [Related]
19. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Macneil JA; Boyd SK Bone; 2008 Jun; 42(6):1203-13. PubMed ID: 18358799 [TBL] [Abstract][Full Text] [Related]
20. The association between mineralised tissue formation and the mechanical local in vivo environment: Time-lapsed quantification of a mouse defect healing model. Tourolle Né Betts DC; Wehrle E; Paul GR; Kuhn GA; Christen P; Hofmann S; Müller R Sci Rep; 2020 Jan; 10(1):1100. PubMed ID: 31980656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]