These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37114568)

  • 1. Who Binds Better? Let Alphafold2 Decide!
    Varga JK; Schueler-Furman O
    Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202303526. PubMed ID: 37114568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing protein folding neural networks for peptide-protein docking.
    Tsaban T; Varga JK; Avraham O; Ben-Aharon Z; Khramushin A; Schueler-Furman O
    Nat Commun; 2022 Jan; 13(1):176. PubMed ID: 35013344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Present Impact of AlphaFold2 Revolution on Structural Biology, and an Illustration With the Structure Prediction of the Bacteriophage J-1 Host Adhesion Device.
    Goulet A; Cambillau C
    Front Mol Biosci; 2022; 9():907452. PubMed ID: 35615740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Signal and Transit Peptide Predictions Using AlphaFold2-predicted Protein Structures.
    Sanaboyana VR; Elcock AH
    J Mol Biol; 2024 Jan; 436(2):168393. PubMed ID: 38065275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ins and outs of AlphaFold2 transmembrane protein structure predictions.
    Hegedűs T; Geisler M; Lukács GL; Farkas B
    Cell Mol Life Sci; 2022 Jan; 79(1):73. PubMed ID: 35034173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2.
    Stein RA; Mchaourab HS
    PLoS Comput Biol; 2022 Aug; 18(8):e1010483. PubMed ID: 35994486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlphaFold2 in biomedical research: facilitating the development of diagnostic strategies for disease.
    Zhang H; Lan J; Wang H; Lu R; Zhang N; He X; Yang J; Chen L
    Front Mol Biosci; 2024; 11():1414916. PubMed ID: 39139810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Protein-Peptide Interactions: Benchmarking Deep Learning Techniques and a Comparison with Focused Docking.
    Shanker S; Sanner MF
    J Chem Inf Model; 2023 May; 63(10):3158-3170. PubMed ID: 37167566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of peptide binding sites on protein surfaces.
    Petsalaki E; Stark A; García-Urdiales E; Russell RB
    PLoS Comput Biol; 2009 Mar; 5(3):e1000335. PubMed ID: 19325869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AlphaFold2-aware protein-DNA binding site prediction using graph transformer.
    Yuan Q; Chen S; Rao J; Zheng S; Zhao H; Yang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CysPresso: a classification model utilizing deep learning protein representations to predict recombinant expression of cysteine-dense peptides.
    Ouellet S; Ferguson L; Lau AZ; Lim TKY
    BMC Bioinformatics; 2023 May; 24(1):200. PubMed ID: 37193950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms.
    Bordin N; Sillitoe I; Nallapareddy V; Rauer C; Lam SD; Waman VP; Sen N; Heinzinger M; Littmann M; Kim S; Velankar S; Steinegger M; Rost B; Orengo C
    Commun Biol; 2023 Feb; 6(1):160. PubMed ID: 36755055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria.
    Gao M; Nakajima An D; Skolnick J
    Elife; 2022 Dec; 11():. PubMed ID: 36576775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational design of cyclic peptides to inhibit protein-peptide interactions.
    Delaunay M; Ha-Duong T
    Biophys Chem; 2023 May; 296():106987. PubMed ID: 36898348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are Deep Learning Structural Models Sufficiently Accurate for Virtual Screening? Application of Docking Algorithms to AlphaFold2 Predicted Structures.
    Díaz-Rovira AM; Martín H; Beuming T; Díaz L; Guallar V; Ray SS
    J Chem Inf Model; 2023 Mar; 63(6):1668-1674. PubMed ID: 36892986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPOT-Peptide: Template-Based Prediction of Peptide-Binding Proteins and Peptide-Binding Sites.
    Litfin T; Yang Y; Zhou Y
    J Chem Inf Model; 2019 Feb; 59(2):924-930. PubMed ID: 30698427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions.
    Lavi A; Ngan CH; Movshovitz-Attias D; Bohnuud T; Yueh C; Beglov D; Schueler-Furman O; Kozakov D
    Proteins; 2013 Dec; 81(12):2096-105. PubMed ID: 24123488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionally annotating cysteine disulfides and metal binding sites in the plant kingdom using AlphaFold2 predicted structures.
    Willems P; Huang J; Messens J; Van Breusegem F
    Free Radic Biol Med; 2023 Jan; 194():220-229. PubMed ID: 36493985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein mononucleotide binding sites using AlphaFold2 and machine learning.
    Yamaguchi S; Nakashima H; Moriwaki Y; Terada T; Shimizu K
    Comput Biol Chem; 2022 Oct; 100():107744. PubMed ID: 35933804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.