BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 37114624)

  • 21. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug-target affinity prediction with extended graph learning-convolutional networks.
    Qi H; Yu T; Yu W; Liu C
    BMC Bioinformatics; 2024 Feb; 25(1):75. PubMed ID: 38365583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network.
    Xu X; Xuan P; Zhang T; Chen B; Sheng N
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2294-2304. PubMed ID: 33729947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous multi-scale neighbor topologies enhanced drug-disease association prediction.
    Xuan P; Meng X; Gao L; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35393616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network.
    Peng J; Li J; Shang X
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):394. PubMed ID: 32938374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of drug-protein interaction based on dual channel neural networks with attention mechanism.
    Tan D; Jiang H; Li H; Xie Y; Su Y
    Brief Funct Genomics; 2024 May; 23(3):286-294. PubMed ID: 37642213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning multi-scale heterogenous network topologies and various pairwise attributes for drug-disease association prediction.
    Zhang H; Cui H; Zhang T; Cao Y; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting Drug-Protein Interactions through Branch-Chain Mining and multi-dimensional attention network.
    Huang Z; Xiao Q; Xiong T; Shi W; Yang Y; Li G
    Comput Biol Med; 2024 Mar; 171():108127. PubMed ID: 38350397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction.
    Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HimGNN: a novel hierarchical molecular graph representation learning framework for property prediction.
    Han S; Fu H; Wu Y; Zhao G; Song Z; Huang F; Zhang Z; Liu S; Zhang W
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning.
    Azadifar S; Ahmadi A
    BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks.
    Ren ZH; You ZH; Yu CQ; Li LP; Guan YJ; Guo LX; Pan J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MFD-GDrug: multimodal feature fusion-based deep learning for GPCR-drug interaction prediction.
    Gu X; Liu J; Yu Y; Xiao P; Ding Y
    Methods; 2024 Mar; 223():75-82. PubMed ID: 38286333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graph based multi-scale neighboring topology deep learning for kidney and tumor segmentation.
    Xuan P; Bi H; Cui H; Jin Q; Zhang T; Tu H; Cheng P; Li C; Ning Z; Guo M; Duh HBL
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36401576
    [No Abstract]   [Full Text] [Related]  

  • 38. An Explainable Framework for Predicting Drug-Side Effect Associations via Meta-Path-Based Feature Learning in Heterogeneous Information Network.
    Zhao W; Yao W; Jiang X; He T; Shi C; Hu X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3635-3647. PubMed ID: 37616131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An effective multi-task learning framework for drug repurposing based on graph representation learning.
    Ye S; Zhao W; Shen X; Jiang X; He T
    Methods; 2023 Oct; 218():48-56. PubMed ID: 37516260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction.
    Jin Y; Lu J; Shi R; Yang Y
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.