These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 37115110)
21. SET7/9-dependent methylation of ARTD1 at K508 stimulates poly-ADP-ribose formation after oxidative stress. Kassner I; Andersson A; Fey M; Tomas M; Ferrando-May E; Hottiger MO Open Biol; 2013 Oct; 3(10):120173. PubMed ID: 24088713 [TBL] [Abstract][Full Text] [Related]
22. The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Abd Elmageed ZY; Naura AS; Errami Y; Zerfaoui M Cell Signal; 2012 Jan; 24(1):1-8. PubMed ID: 21840394 [TBL] [Abstract][Full Text] [Related]
23. The Promise of Proteomics for the Study of ADP-Ribosylation. Daniels CM; Ong SE; Leung AK Mol Cell; 2015 Jun; 58(6):911-24. PubMed ID: 26091340 [TBL] [Abstract][Full Text] [Related]
24. Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies. Virág L Curr Vasc Pharmacol; 2005 Jul; 3(3):209-14. PubMed ID: 16026317 [TBL] [Abstract][Full Text] [Related]
25. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Alemasova EE; Lavrik OI Nucleic Acids Res; 2022 Oct; 50(19):10817-10838. PubMed ID: 36243979 [TBL] [Abstract][Full Text] [Related]
26. Structural analyses of NudT16-ADP-ribose complexes direct rational design of mutants with improved processing of poly(ADP-ribosyl)ated proteins. Thirawatananond P; McPherson RL; Malhi J; Nathan S; Lambrecht MJ; Brichacek M; Hergenrother PJ; Leung AKL; Gabelli SB Sci Rep; 2019 Apr; 9(1):5940. PubMed ID: 30976021 [TBL] [Abstract][Full Text] [Related]
27. Detecting Poly (ADP-Ribose) In Vitro and in Cells Using PAR Trackers. Challa S; Whitaker AL; Kraus WL Methods Mol Biol; 2023; 2609():75-90. PubMed ID: 36515830 [TBL] [Abstract][Full Text] [Related]
28. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription. Bütepage M; Preisinger C; von Kriegsheim A; Scheufen A; Lausberg E; Li J; Kappes F; Feederle R; Ernst S; Eckei L; Krieg S; Müller-Newen G; Rossetti G; Feijs KLH; Verheugd P; Lüscher B Sci Rep; 2018 Apr; 8(1):6748. PubMed ID: 29712969 [TBL] [Abstract][Full Text] [Related]
29. Structural and biochemical evidence supporting poly ADP-ribosylation in the bacterium Deinococcus radiodurans. Cho CC; Chien CY; Chiu YC; Lin MH; Hsu CH Nat Commun; 2019 Apr; 10(1):1491. PubMed ID: 30940816 [TBL] [Abstract][Full Text] [Related]
30. Catching mono- and poly-ADP-ribose readers with synthetic ADP-ribose baits. Cohen MS Mol Cell; 2021 Nov; 81(21):4351-4353. PubMed ID: 34739826 [TBL] [Abstract][Full Text] [Related]
31. Poly(ADP-ribose): Structure, Physicochemical Properties and Quantification In Vivo, with Special Reference to Poly(ADP-ribose) Binding Protein Modules. Miwa M; Ida C; Yamashita S; Tanaka M; Fujisawa J Curr Protein Pept Sci; 2016; 17(7):683-692. PubMed ID: 27817744 [TBL] [Abstract][Full Text] [Related]
32. ENPP1 processes protein ADP-ribosylation in vitro. Palazzo L; Daniels CM; Nettleship JE; Rahman N; McPherson RL; Ong SE; Kato K; Nureki O; Leung AK; Ahel I FEBS J; 2016 Sep; 283(18):3371-88. PubMed ID: 27406238 [TBL] [Abstract][Full Text] [Related]
33. FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage. Mamontova EM; Clément MJ; Sukhanova MV; Joshi V; Bouhss A; Rengifo-Gonzalez JC; Desforges B; Hamon L; Lavrik OI; Pastré D Cell Rep; 2023 Oct; 42(10):113199. PubMed ID: 37804508 [TBL] [Abstract][Full Text] [Related]
34. Disrupted ADP-ribose metabolism with nuclear Poly (ADP-ribose) accumulation leads to different cell death pathways in presence of hydrogen peroxide in procyclic Trypanosoma brucei. Schlesinger M; Vilchez Larrea SC; Haikarainen T; Narwal M; Venkannagari H; Flawiá MM; Lehtiö L; Fernández Villamil SH Parasit Vectors; 2016 Mar; 9():173. PubMed ID: 27007296 [TBL] [Abstract][Full Text] [Related]
35. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Altmeyer M; Messner S; Hassa PO; Fey M; Hottiger MO Nucleic Acids Res; 2009 Jun; 37(11):3723-38. PubMed ID: 19372272 [TBL] [Abstract][Full Text] [Related]
36. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Karlberg T; Langelier MF; Pascal JM; Schüler H Mol Aspects Med; 2013 Dec; 34(6):1088-108. PubMed ID: 23458732 [TBL] [Abstract][Full Text] [Related]
37. Poly(ADP-ribose) Polymerase 1 Modulates Interaction of the Nucleotide Excision Repair Factor XPC-RAD23B with DNA via Poly(ADP-ribosyl)ation. Maltseva EA; Rechkunova NI; Sukhanova MV; Lavrik OI J Biol Chem; 2015 Sep; 290(36):21811-20. PubMed ID: 26170451 [TBL] [Abstract][Full Text] [Related]
38. New insights of poly(ADP-ribosylation) in neurodegenerative diseases: A focus on protein phase separation and pathologic aggregation. Liu C; Fang Y Biochem Pharmacol; 2019 Sep; 167():58-63. PubMed ID: 31034795 [TBL] [Abstract][Full Text] [Related]
39. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Alemasova EE; Lavrik OI Nucleic Acids Res; 2019 May; 47(8):3811-3827. PubMed ID: 30799503 [TBL] [Abstract][Full Text] [Related]
40. Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. Daniels CM; Ong SE; Leung AK J Proteome Res; 2014 Aug; 13(8):3510-22. PubMed ID: 24920161 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]