These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37115190)

  • 1. Flexible but Refractory Single-Crystalline Hyperbolic Metamaterials.
    Zhang R; Lin T; Peng S; Bi J; Zhang S; Su G; Sun J; Gao J; Cao H; Zhang Q; Gu L; Cao Y
    Nano Lett; 2023 May; 23(9):3879-3886. PubMed ID: 37115190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wafer-Scale Epitaxy of Flexible Nitride Films with Superior Plasmonic and Superconducting Performance.
    Zhang R; Li X; Meng F; Bi J; Zhang S; Peng S; Sun J; Wang X; Wu L; Duan J; Cao H; Zhang Q; Gu L; Huang LF; Cao Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60182-60191. PubMed ID: 34881876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials.
    Naik GV; Saha B; Liu J; Saber SM; Stach EA; Irudayaraj JM; Sands TD; Shalaev VM; Boltasseva A
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7546-51. PubMed ID: 24821762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZnO-Au
    Paldi RL; Lu J; Pachaury Y; He Z; Bhatt NA; Zhang X; El-Azab A; Siddiqui A; Wang H
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-loss hyperbolic dispersion and anisotropic plasmonic excitation in nodal-line semimetallic yttrium nitride.
    Gao H; Sun L; Zhao M
    Opt Express; 2020 Jul; 28(15):22076-22087. PubMed ID: 32752475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative Refraction in the Visible and Strong Plasmonic Resonances in Photonic Structures of the Electride Material Mg
    Kim KH; Wi JH; Choe MI
    Chemphyschem; 2020 Jul; 21(14):1541-1547. PubMed ID: 32500574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Two-Dimensional Electrides XONa (X=Mg, Ca) as Novel Natural Hyperbolic Materials.
    Choe MI; Kim KH; Wi JH
    Chemphyschem; 2021 Jan; 22(1):92-98. PubMed ID: 33174676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waves in hyperbolic and double negative metamaterials including rogues and solitons.
    Boardman AD; Alberucci A; Assanto G; Grimalsky VV; Kibler B; McNiff J; Nefedov IS; Rapoport YG; Valagiannopoulos CA
    Nanotechnology; 2017 Nov; 28(44):444001. PubMed ID: 28306553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Optical Filters with Hyperbolic Metamaterials.
    Abdulkareem MA; López-Rayón F; Sosa-Sánchez CT; Bautista González RE; Arroyo Carrasco ML; Peña-Gomar M; Coello V; Téllez-Limón R
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-frequency hyperbolic metasurface.
    High AA; Devlin RC; Dibos A; Polking M; Wild DS; Perczel J; de Leon NP; Lukin MD; Park H
    Nature; 2015 Jun; 522(7555):192-6. PubMed ID: 26062510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolayer NaW
    Huang E; Xiang H; Jiao H; Zhou X; Du J; Zhong W; Xu B
    Nanoscale Adv; 2022 Jul; 4(15):3282-3290. PubMed ID: 36132814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered van der Waals crystals with hyperbolic light dispersion.
    Gjerding MN; Petersen R; Pedersen TG; Mortensen NA; Thygesen KS
    Nat Commun; 2017 Aug; 8(1):320. PubMed ID: 28831045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrabroadband light absorption based on photonic topological transitions in hyperbolic metamaterials.
    Jiang X; Wang T; Zhong Q; Yan R; Huang X
    Opt Express; 2020 Jan; 28(1):705-714. PubMed ID: 32118993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials.
    Dickson W; Beckett S; McClatchey C; Murphy A; O'Connor D; Wurtz GA; Pollard R; Zayats AV
    Adv Mater; 2015 Oct; 27(39):5974-80. PubMed ID: 26315672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal hyperbolic metamaterials.
    Guo Y; Jacob Z
    Opt Express; 2013 Jun; 21(12):15014-9. PubMed ID: 23787688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials.
    Zheng Y; Wang Q; Lin M; Ouyang Z
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared plasmons propagate through a hyperbolic nodal metal.
    Shao Y; Sternbach AJ; Kim BSY; Rikhter AA; Xu X; De Giovannini U; Jing R; Chae SH; Sun Z; Lee SH; Zhu Y; Mao Z; Hone JC; Queiroz R; Millis AJ; Schuck PJ; Rubio A; Fogler MM; Basov DN
    Sci Adv; 2022 Oct; 8(43):eadd6169. PubMed ID: 36288317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable angle-selective optical transparency induced by photonic topological transition in Dirac semimetals-based hyperbolic metamaterials.
    Wang Q; Zhang L; Cai X; Cencillo-Abad P; Ou JY
    Opt Express; 2022 Jun; 30(13):23102-23114. PubMed ID: 36224997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Omnidirectional photonic bandgap in one-dimensional photonic crystals containing hyperbolic metamaterials.
    Lu G; Zhou X; Zhao Y; Zhang K; Zhou H; Li J; Diao C; Liu F; Wu A; Du G
    Opt Express; 2021 Sep; 29(20):31915-31923. PubMed ID: 34615273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Free Oxide-Nitride Heterostructure as a Tunable Hyperbolic Metamaterial Platform.
    Wang X; Wang H; Jian J; Rutherford BX; Gao X; Xu X; Zhang X; Wang H
    Nano Lett; 2020 Sep; 20(9):6614-6622. PubMed ID: 32787175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.