BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 37115251)

  • 1. Protection of postharvest grains from fungal spoilage by biogenic volatiles.
    Duan WY; Zhang SB; Lei JD; Qin YL; Li YN; Lv YY; Zhai HC; Cai JP; Hu YS
    Appl Microbiol Biotechnol; 2023 Jun; 107(11):3375-3390. PubMed ID: 37115251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antifungal mechanisms of plant volatile compound 1-octanol against Aspergillus flavus growth.
    Qin YL; Zhang SB; Lv YY; Zhai HC; Hu YS; Cai JP
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5179-5196. PubMed ID: 35779097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective antifungal activity of essential oils extracted from Buddleja perfoliata and Pelargonium graveolens against fungi isolated from stored grains.
    Juárez ZN; Bach H; Sánchez-Arreola E; Bach H; Hernández LR
    J Appl Microbiol; 2016 May; 120(5):1264-70. PubMed ID: 26854645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains.
    Feng J; Yanshao B; Wang H; Zhang X; Wang F
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2023 Sep; 40(9):1242-1263. PubMed ID: 37549249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-destructive techniques for the detection of fungal infection in cereal grains.
    Orina I; Manley M; Williams PJ
    Food Res Int; 2017 Oct; 100(Pt 1):74-86. PubMed ID: 28873744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effect of (E)-2-heptenal on Aspergillus flavus growth revealed by metabolomics and biochemical analyses.
    Duan WY; Zhang SB; Lv YY; Zhai HC; Wei S; Ma PA; Cai JP; Hu YS
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):341-354. PubMed ID: 36477927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential oils: An eco-friendly alternative for controlling toxigenic fungi in cereal grains.
    Almeida NA; Freire L; Carnielli-Queiroz L; Bragotto APA; Silva NCC; Rocha LO
    Compr Rev Food Sci Food Saf; 2024 Jan; 23(1):e13251. PubMed ID: 38284600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal mechanism of 1-nonanol against Aspergillus flavus growth revealed by metabolomic analyses.
    Zhang SB; Qin YL; Li SF; Lv YY; Zhai HC; Hu YS; Cai JP
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7871-7888. PubMed ID: 34550439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Fungal Strains Isolated from Cereal Grains via Vapor Phase of Essential Oils.
    Střelková T; Nemes B; Kovács A; Novotný D; Božik M; Klouček P
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33804452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants.
    Sardella D; Gatt R; Valdramidis VP
    Food Res Int; 2017 Nov; 101():274-279. PubMed ID: 28941694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixing postharvest fungicides and sanitizers results in unpredictable survival of microbes that affect cantaloupes.
    Rothwell JG; Safianowicz K; McConchie R; Bell TL; Carter DA; Bradbury MI
    Food Microbiol; 2021 Oct; 99():103797. PubMed ID: 34119092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage.
    Magan N; Evans P
    J Stored Prod Res; 2000 Oct; 36(4):319-340. PubMed ID: 10880811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevention of toxigenic fungal growth in stored grains by carbon dioxide detection.
    Zhai HC; Zhang SB; Huang SX; Cai JP
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):596-603. PubMed ID: 25254604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review.
    Chen Y; Xing M; Chen T; Tian S; Li B
    Food Chem; 2023 Jul; 415():135787. PubMed ID: 36854245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current and Future Technologies for Microbiological Decontamination of Cereal Grains.
    Los A; Ziuzina D; Bourke P
    J Food Sci; 2018 Jun; 83(6):1484-1493. PubMed ID: 29799123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of the activity of thiosemicarbazone derivatives against mycotoxigenic fungi affecting cereals.
    Degola F; Morcia C; Bisceglie F; Mussi F; Tumino G; Ghizzoni R; Pelosi G; Terzi V; Buschini A; Restivo FM; Lodi T
    Int J Food Microbiol; 2015 May; 200():104-11. PubMed ID: 25702884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation.
    Tarazona A; Gómez JV; Mateo EM; Jiménez M; Mateo F
    Int J Food Microbiol; 2019 Oct; 306():108259. PubMed ID: 31349113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fungal deterioration on grain: nutritional value, toxicity, germination.
    Sauer DB
    Int J Food Microbiol; 1988 Dec; 7(3):267-75. PubMed ID: 3079473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage.
    Gupta R; Srivastava S
    Food Microbiol; 2014 Sep; 42():1-7. PubMed ID: 24929709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage.
    Mannaa M; Kim KD
    Mycobiology; 2017 Dec; 45(4):240-254. PubMed ID: 29371792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.