BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37115375)

  • 1. Effect of copper, arsenic and nickel on pyrite-based autotrophic denitrification.
    Carboni MF; Arriaga S; Lens PNL
    Biodegradation; 2024 Feb; 35(1):101-114. PubMed ID: 37115375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Cu, Ni and Zn on Fe(II)-driven autotrophic denitrification.
    Kiskira K; Papirio S; Fourdrin C; van Hullebusch ED; Esposito G
    J Environ Manage; 2018 Jul; 218():209-219. PubMed ID: 29680753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term effects of Cu(II) on denitrification in hydrogen-based membrane biofilm reactor: Performance, extracellular polymeric substances and microbial communities.
    Xie T; Xi Y; Liu Y; Liu H; Su Z; Huang Y; Xu W; Wang D; Zhang C; Li X
    Sci Total Environ; 2022 Jul; 830():154526. PubMed ID: 35288132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH control of an upflow pyrite-oxidizing denitrifying bioreactor via electrohydrogenesis.
    Xiao Z; Wang W; Chen D; Yu Y; Huang H
    Bioresour Technol; 2019 Jun; 281():41-47. PubMed ID: 30785000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation into pyrite autotrophic denitrification with different mineral properties.
    Li R; Zhang Y; Guan M
    Water Res; 2022 Aug; 221():118763. PubMed ID: 35759850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater.
    Pu J; Feng C; Liu Y; Li R; Kong Z; Chen N; Tong S; Hao C; Liu Y
    Bioresour Technol; 2014 Dec; 173():117-123. PubMed ID: 25299487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pyrite particle size on the denitrification performance of autotrophic or split-mixotrophic bioreactors supported by pyrite/polycaprolactone.
    Guo X; Peng G; Tan L; Zhang Y; Wang J; Wang W; Zhang S
    Water Environ Res; 2024 May; 96(5):e11040. PubMed ID: 38752384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic ammonia and nitrate removal in a novel pyrite-driven autotrophic denitrification biofilter.
    Wang Y; Wu G; Zheng X; Mao W; Guan Y
    Bioresour Technol; 2022 Jul; 355():127223. PubMed ID: 35483533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixotrophic denitrification using pyrite and biodegradable polymer composite as electron donors.
    Pang Y; Hu L; Wang J
    Bioresour Technol; 2022 May; 351():127011. PubMed ID: 35307522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers.
    Li Y; Guo J; Li H; Song Y; Chen Z; Lu C; Han Y; Hou Y
    Bioresour Technol; 2020 Jan; 296():122340. PubMed ID: 31704601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe
    Li H; Li Y; Guo J; Song Y; Hou Y; Lu C; Han Y; Shen X; Liu B
    Environ Res; 2021 Mar; 194():110708. PubMed ID: 33428914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrite-Based Autotrophic Denitrifying Microorganisms Derived from Paddy Soils: Effects of Organic Co-Substrate Addition.
    Xu B; Yang X; Li Y; Yang K; Xiong Y; Yuan N
    Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36142037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification.
    Liu T; Hu Y; Chen N; He Q; Feng C
    J Hazard Mater; 2021 Aug; 416():125844. PubMed ID: 33878651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electric current intensity on performance of polycaprolactone/FeS
    Yang X; Tang Z; Xiao L; Zhang S; Jin J; Zhang S
    Bioresour Technol; 2022 Oct; 361():127757. PubMed ID: 35952860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification.
    Zhang RC; Xu XJ; Chen C; Xing DF; Shao B; Liu WZ; Wang AJ; Lee DJ; Ren NQ
    Water Res; 2018 Oct; 143():355-366. PubMed ID: 29986245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge.
    Tian T; Zhou K; Xuan L; Zhang JX; Li YS; Liu DF; Yu HQ
    Water Res; 2020 Mar; 170():115300. PubMed ID: 31756614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrite and sulfur-coupled autotrophic denitrification system for efficient nitrate and phosphate removal.
    Liu X; Zhao C; Xu T; Liu W; Chen Q; Li L; Tan Y; Wang X; Dong Y
    Bioresour Technol; 2023 Sep; 384():129363. PubMed ID: 37336446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nickel on the comparative performance of inverse fluidized bed and continuously stirred tank reactors for biogenic sulphur-driven autotrophic denitrification.
    Namburath M; Papirio S; Moscariello C; Di Costanzo N; Pirozzi F; Alappat BJ; Sreekrishnan TR
    J Environ Manage; 2020 Dec; 275():111301. PubMed ID: 32866922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled pyrite and sulfur autotrophic denitrification for simultaneous removal of nitrogen and phosphorus from secondary effluent: feasibility, performance and mechanisms.
    Chen Z; Pang C; Wen Q
    Water Res; 2023 Sep; 243():120422. PubMed ID: 37523921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facultative autotrophic denitrifiers in denitrifying sulfide removal granules.
    Lee DJ; Pan X; Wang A; Ho KL
    Bioresour Technol; 2013 Mar; 132():356-60. PubMed ID: 23265816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.