BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37115447)

  • 1. The effect of FeS on the fate of Cr(VI) in the presence of organic matters under dynamic anoxic/oxic conditions.
    Hou J; Li Z; Xia J; Huo Z; Wu J
    Environ Sci Pollut Res Int; 2023 May; 30(25):67472-67484. PubMed ID: 37115447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments.
    Li B; Liao P; Xie L; Li Q; Pan C; Ning Z; Liu C
    Water Res; 2020 Aug; 181():115923. PubMed ID: 32422451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FeS-mediated mobilization and immobilization of Cr(III) in oxic aquatic systems.
    Wang T; Zhao D; Cao J; Zeng Q; Li W; Liu B; He D; Liu Y
    Water Res; 2022 Mar; 211():118077. PubMed ID: 35065338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of abiotic mineral transformation of FeS on the dynamic immobilization of Cr(VI) in oxic aquatic environments.
    Wang T; Zhao D; Liu J; Zhang T; Wang X; Liu T; Wang S; Liu G; Liu B; Liu Y
    Sci Total Environ; 2023 Oct; 894():164991. PubMed ID: 37343854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH-sensitve oxygenation of FeS: Mineral transformation and immobilization of Cr(VI).
    Wang T; Liu Y; Liu B
    Water Res; 2023 Apr; 233():119722. PubMed ID: 36801571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at Anoxic-Oxic Interfaces.
    Liao P; Pan C; Ding W; Li W; Yuan S; Fortner JD; Giammar DE
    Environ Sci Technol; 2020 Apr; 54(7):4256-4266. PubMed ID: 32163701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between chromite and Mn(II/IV) under anoxic, oxic and anoxic-oxic conditions: Dissolution, oxidation and pH dependence.
    Ao M; Sun S; Deng T; Li J; Liu T; Tang Y; Wang S; Qiu R
    J Environ Manage; 2024 Jan; 349():119475. PubMed ID: 37922821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides.
    Ao M; Sun S; Deng T; Zhang F; Liu T; Tang Y; Li J; Wang S; Qiu R
    J Hazard Mater; 2022 Jul; 433():128805. PubMed ID: 35381512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems.
    Yoon IH; Bang S; Chang JS; Gyu Kim M; Kim KW
    J Hazard Mater; 2011 Feb; 186(1):855-62. PubMed ID: 21163574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation.
    Kavouras P; Pantazopoulou E; Varitis S; Vourlias G; Chrissafis K; Dimitrakopulos GP; Mitrakas M; Zouboulis AI; Karakostas T; Xenidis A
    J Hazard Mater; 2015; 283():672-9. PubMed ID: 25464309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic-Oxic Interfaces.
    Liao P; Li W; Jiang Y; Wu J; Yuan S; Fortner JD; Giammar DE
    Environ Sci Technol; 2017 Nov; 51(21):12235-12245. PubMed ID: 28992695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cr(VI) adsorption and reduction by humic acid coated on magnetite.
    Jiang W; Cai Q; Xu W; Yang M; Cai Y; Dionysiou DD; O'Shea KE
    Environ Sci Technol; 2014 Jul; 48(14):8078-85. PubMed ID: 24901955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires.
    Mu Y; Wu H; Ai Z
    J Hazard Mater; 2015 Nov; 298():1-10. PubMed ID: 25988715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of TOC Concentration of Humic Substances as an Electron Shuttle on Redox Functional Groups Stimulating Microbial Cr(VI) Reduction.
    Zhou Y; Duan J; Jiang J; Yang Z
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis.
    Hori M; Shozugawa K; Matsuo M
    J Hazard Mater; 2015 Mar; 285():140-7. PubMed ID: 25497027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-response of Fe-reducing/oxidizing bacteria and Fe species to the dynamic redox cycles of natural sediment.
    Chen R; Liu H; Zhang P; Ma J; Jin M
    Sci Total Environ; 2022 Apr; 815():152953. PubMed ID: 34999076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ prepared algae-supported iron sulfide to remove hexavalent chromium.
    Wu J; Zheng H; Hou J; Miao L; Zhang F; Zeng RJ; Xing B
    Environ Pollut; 2021 Apr; 274():115831. PubMed ID: 33213947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems.
    Schlautman MA; Han I
    Water Res; 2001 Apr; 35(6):1534-46. PubMed ID: 11317901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation.
    Pan C; Troyer LD; Liao P; Catalano JG; Li W; Giammar DE
    Environ Sci Technol; 2017 Jun; 51(11):6308-6318. PubMed ID: 28530105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect of novel pyrite/N-doped reduced graphene oxide composite with heterojunction structure for enhanced photo-assisted reduction of Cr(VI) in oxic water: Specific role of molecular oxygen.
    Yang K; Chi Y; Yang Y; Lou Z; Wang T; Wang D; Miao H; Xu X
    Sci Total Environ; 2024 Jan; 907():168123. PubMed ID: 37884135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.