These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 37115515)
1. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. Sekar MP; Suresh S; Zennifer A; Sethuraman S; Sundaramurthi D ACS Biomater Sci Eng; 2023 Jun; 9(6):3134-3159. PubMed ID: 37115515 [TBL] [Abstract][Full Text] [Related]
2. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
3. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
4. 3D Bioprinting with Visible Light Cross-Linkable Mucin-Hyaluronic Acid Composite Bioink for Lung Tissue Engineering. Sasikumar SC; Goswami U; Raichur AM ACS Appl Bio Mater; 2024 Aug; 7(8):5411-5422. PubMed ID: 38996006 [TBL] [Abstract][Full Text] [Related]
5. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models. Zhou K; Ding R; Tao X; Cui Y; Yang J; Mao H; Gu Z Acta Biomater; 2023 Oct; 169():243-255. PubMed ID: 37572980 [TBL] [Abstract][Full Text] [Related]
6. Nanocomposite bioinks for 3D bioprinting. Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479 [TBL] [Abstract][Full Text] [Related]
7. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285 [TBL] [Abstract][Full Text] [Related]
8. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490 [TBL] [Abstract][Full Text] [Related]
9. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
10. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A; Mandal BB; Bhardwaj N J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587 [TBL] [Abstract][Full Text] [Related]
11. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis. Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564 [TBL] [Abstract][Full Text] [Related]
12. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737 [TBL] [Abstract][Full Text] [Related]
13. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Teixeira MC; Lameirinhas NS; Carvalho JPF; Silvestre AJD; Vilela C; Freire CSR Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743006 [TBL] [Abstract][Full Text] [Related]
14. Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Zhang H; Wang Y; Zheng Z; Wei X; Chen L; Wu Y; Huang W; Yang L Theranostics; 2023; 13(8):2562-2587. PubMed ID: 37215563 [TBL] [Abstract][Full Text] [Related]
15. Photoclick polysaccharide-based bioinks with an extended biofabrication window for 3D embedded bioprinting. Zhou K; Feng M; Mao H; Gu Z Biomater Sci; 2022 Aug; 10(16):4479-4491. PubMed ID: 35792832 [TBL] [Abstract][Full Text] [Related]
16. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Dzobo K; Motaung KSCM; Adesida A Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540457 [TBL] [Abstract][Full Text] [Related]
17. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
18. Development, characterization and sterilisation of Nanocellulose-alginate-(hyaluronic acid)- bioinks and 3D bioprinted scaffolds for tissue engineering. Lafuente-Merchan M; Ruiz-Alonso S; Espona-Noguera A; Galvez-Martin P; López-Ruiz E; Marchal JA; López-Donaire ML; Zabala A; Ciriza J; Saenz-Del-Burgo L; Pedraz JL Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112160. PubMed ID: 34082965 [TBL] [Abstract][Full Text] [Related]
19. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting. Feng Q; Li D; Li Q; Li H; Wang Z; Zhu S; Lin Z; Cao X; Dong H ACS Appl Mater Interfaces; 2022 Apr; 14(13):15653-15666. PubMed ID: 35344348 [TBL] [Abstract][Full Text] [Related]
20. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review. Chen H; Xue H; Zeng H; Dai M; Tang C; Liu L Biomater Res; 2023 Dec; 27(1):137. PubMed ID: 38142273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]