These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37115636)

  • 1. Predicting allosteric pockets in protein biological assemblages.
    Kumar A; Kaynak BT; Dorman KS; Doruker P; Jernigan RL
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37115636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis.
    Greener JG; Sternberg MJ
    BMC Bioinformatics; 2015 Oct; 16():335. PubMed ID: 26493317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PASSer: Prediction of Allosteric Sites Server.
    Tian H; Jiang X; Tao P
    Mach Learn Sci Technol; 2021 Sep; 2(3):. PubMed ID: 34396127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Conformational Landscapes and Cryptic Binding Pockets in Distinct Functional States of the SARS-CoV-2 Omicron BA.1 and BA.2 Trimers: Mutation-Induced Modulation of Protein Dynamics and Network-Guided Prediction of Variant-Specific Allosteric Binding Sites.
    Verkhivker G; Alshahrani M; Gupta G
    Viruses; 2023 Sep; 15(10):. PubMed ID: 37896786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. APoc: large-scale identification of similar protein pockets.
    Gao M; Skolnick J
    Bioinformatics; 2013 Mar; 29(5):597-604. PubMed ID: 23335017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PASSerRank: Prediction of allosteric sites with learning to rank.
    Tian H; Xiao S; Jiang X; Tao P
    J Comput Chem; 2023 Oct; 44(28):2223-2229. PubMed ID: 37561047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pocket to concavity: a tool for the refinement of protein-ligand binding site shape from alpha spheres.
    Kudo G; Hirao T; Yoshino R; Shigeta Y; Hirokawa T
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37086438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.
    Xu Y; Wang S; Hu Q; Gao S; Ma X; Zhang W; Shen Y; Chen F; Lai L; Pei J
    Nucleic Acids Res; 2018 Jul; 46(W1):W374-W379. PubMed ID: 29750256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PASSer: fast and accurate prediction of protein allosteric sites.
    Tian H; Xiao S; Jiang X; Tao P
    Nucleic Acids Res; 2023 Jul; 51(W1):W427-W431. PubMed ID: 37102691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multilayer dynamic perturbation analysis method for predicting ligand-protein interactions.
    Gu L; Li B; Ming D
    BMC Bioinformatics; 2022 Nov; 23(1):456. PubMed ID: 36324073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures.
    Egbert M; Jones G; Collins MR; Kozakov D; Vajda S
    J Mol Biol; 2022 Jun; 434(11):167587. PubMed ID: 35662465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARS: a web server for the prediction of Protein Allosteric and Regulatory Sites.
    Panjkovich A; Daura X
    Bioinformatics; 2014 May; 30(9):1314-5. PubMed ID: 24413526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of allosteric binding sites by crystallographic fragment screening.
    Krojer T; Fraser JS; von Delft F
    Curr Opin Struct Biol; 2020 Dec; 65():209-216. PubMed ID: 33171388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Binding Pockets in the Conformational States of the SARS-CoV-2 Spike Trimers for the Screening of Allosteric Inhibitors Using Molecular Simulations and Ensemble-Based Ligand Docking.
    Gupta G; Verkhivker G
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential site scanning analysis: A new approach for detecting sites that modulate the dispersion of protein global motions.
    Kaynak BT; Bahar I; Doruker P
    Comput Struct Biotechnol J; 2020; 18():1577-1586. PubMed ID: 32637054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ALLO: A tool to discriminate and prioritize allosteric pockets.
    Akbar R; Helms V
    Chem Biol Drug Des; 2018 Apr; 91(4):845-853. PubMed ID: 29250934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein pocket detection via convex hull surface evolution and associated Reeb graph.
    Zhao R; Cang Z; Tong Y; Wei GW
    Bioinformatics; 2018 Sep; 34(17):i830-i837. PubMed ID: 30423105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling dynamics and evolutionary information with structure to identify protein regulatory and functional binding sites.
    Mishra SK; Kandoi G; Jernigan RL
    Proteins; 2019 Oct; 87(10):850-868. PubMed ID: 31141211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the structural conservation of protein pockets to study functional and allosteric sites: implications for drug discovery.
    Panjkovich A; Daura X
    BMC Struct Biol; 2010 Mar; 10():9. PubMed ID: 20356358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NRIMD, a Web Server for Analyzing Protein Allosteric Interactions Based on Molecular Dynamics Simulation.
    He Y; Wang S; Zeng S; Zhu J; Xu D; Han W; Wang J
    J Chem Inf Model; 2024 Oct; 64(19):7176-7183. PubMed ID: 38991149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.