These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37115838)

  • 41. Haptic rendering & perception studies for laparoscopic surgery simulation.
    McColl R; Brown AP; Seligman C; Lim F; Alsaraira A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():833-6. PubMed ID: 17946424
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pseudo-haptics and self-haptics for freehand mid-air text entry in VR.
    Kim W; Xiong S
    Appl Ergon; 2022 Oct; 104():103819. PubMed ID: 35687993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback.
    Pacchierotti C; Abayazid M; Misra S; Prattichizzo D
    IEEE Trans Haptics; 2014; 7(4):551-6. PubMed ID: 25265614
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A generalized haptic feedback approach for arbitrarily shaped objects.
    Hu R; Barner KE; Steiner KV
    Stud Health Technol Inform; 2011; 163():224-30. PubMed ID: 21335793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.
    van der Meijden OA; Schijven MP
    Surg Endosc; 2009 Jun; 23(6):1180-90. PubMed ID: 19118414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inducing Self-Motion Sensations With Haptic Feedback: State-of-The-Art and Perspectives on "Haptic Motion".
    Costes A; Lecuyer A
    IEEE Trans Haptics; 2023; 16(2):171-181. PubMed ID: 37220040
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Easy-To-Wear Auxetic SMA Knot-Architecture for Spatiotemporal and Multimodal Haptic Feedbacks.
    Oh S; Song TE; Mahato M; Kim JS; Yoo H; Lee MJ; Khan M; Yeo WH; Oh IK
    Adv Mater; 2023 Nov; 35(47):e2304442. PubMed ID: 37724828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A pneumatic haptic feedback actuator array for robotic surgery or simulation.
    King CH; Higa AT; Culjat MO; Han SH; Bisley JW; Carman GP; Dutson E; Grundfest WS
    Stud Health Technol Inform; 2007; 125():217-22. PubMed ID: 17377270
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of visual and haptic feedback on computer-assisted needle insertion.
    Gerovich O; Marayong P; Okamura AM
    Comput Aided Surg; 2004; 9(6):243-9. PubMed ID: 16112974
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery.
    Beyl T; Nicolai P; Mönnich H; Raczkowksy J; Wörn H
    Stud Health Technol Inform; 2012; 173():58-63. PubMed ID: 22356957
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Haptic tracking control for minimally invasive robotic surgery].
    Xu Z; Song C; Wu W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):407-10. PubMed ID: 22826928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Novel Untethered Hand Wearable with Fine-Grained Cutaneous Haptic Feedback.
    Abad AC; Reid D; Ranasinghe A
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271069
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using the PhysX engine for physics-based virtual surgery with force feedback.
    Maciel A; Halic T; Lu Z; Nedel LP; De S
    Int J Med Robot; 2009 Sep; 5(3):341-53. PubMed ID: 19449317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Haptic Enchanters: Attachable and Detachable Vibrotactile Modules and Their Advantages.
    Park G; Cha H; Choi S
    IEEE Trans Haptics; 2019; 12(1):43-55. PubMed ID: 30047899
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preliminary study on mechanical characteristics of maxillofacial soft and hard tissues for virtual surgery.
    Zhuang Y; Chen J; Liu Q; Zou F; Lin Y; An Q; Yu H
    Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):151-160. PubMed ID: 33130999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Haptic feedback control in medical robots through fractional viscoelastic tissue model.
    Kobayashi Y; Moreira P; Liu C; Poignet P; Zemiti N; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6704-8. PubMed ID: 22255877
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gaze-Contingent Motor Channelling, haptic constraints and associated cognitive demand for robotic MIS.
    Mylonas GP; Kwok KW; James DR; Leff D; Orihuela-Espina F; Darzi A; Yang GZ
    Med Image Anal; 2012 Apr; 16(3):612-31. PubMed ID: 20889367
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems.
    Nitsch V; Färber B
    IEEE Trans Haptics; 2013; 6(4):387-98. PubMed ID: 24808391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.