These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37116115)

  • 1. Harnessing Nucleic Acids Nanotechnology for Bone/Cartilage Regeneration.
    Han Y; Cao L; Li G; Zhou F; Bai L; Su J
    Small; 2023 Sep; 19(37):e2301996. PubMed ID: 37116115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell unit-inspired natural nano-based biomaterials as versatile building blocks for bone/cartilage regeneration.
    Wang F; Gu Z; Yin Z; Zhang W; Bai L; Su J
    J Nanobiotechnology; 2023 Aug; 21(1):293. PubMed ID: 37620914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation.
    Li J; Green AA; Yan H; Fan C
    Nat Chem; 2017 Nov; 9(11):1056-1067. PubMed ID: 29064489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances of nanotechnology in osteochondral regeneration.
    Deng C; Xu C; Zhou Q; Cheng Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1576. PubMed ID: 31329375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotechnology-based bone regeneration in orthopedics: a review of recent trends.
    Liang W; Zhou C; Bai J; Zhang H; Long H; Jiang B; Liu L; Xia L; Jiang C; Zhang H; Zhao J
    Nanomedicine (Lond); 2024 Feb; 19(3):255-275. PubMed ID: 38275154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of emerging nanotechnology in bone regeneration: progress, challenges, and perspectives.
    Hajiali H; Ouyang L; Llopis-Hernandez V; Dobre O; Rose FRAJ
    Nanoscale; 2021 Jun; 13(23):10266-10280. PubMed ID: 34085085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research progress on the application of framework nucleic acid in bone regeneration.
    Lin YF
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2021 Dec; 39(6):624-632. PubMed ID: 34859621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies.
    Paloncýová M; Pykal M; Kührová P; Banáš P; Šponer J; Otyepka M
    Small; 2022 Dec; 18(49):e2204408. PubMed ID: 36216589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opportunities, Barriers, and a Strategy for Overcoming Translational Challenges to Therapeutic Nucleic Acid Nanotechnology.
    Afonin KA; Dobrovolskaia MA; Church G; Bathe M
    ACS Nano; 2020 Aug; 14(8):9221-9227. PubMed ID: 32706238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleic Acid Nanotechnology: Trends, Opportunities and Challenges.
    Singh RP; Srivastava AK; Yang YJ; Manchanda G; Kumar A; Yerpude ST; Rai AR; Dubey RC
    Curr Pharm Biotechnol; 2023; 24(1):50-60. PubMed ID: 35619298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Nanotechnology for the Treatment of Osteoporosis.
    Barry M; Pearce H; Cross L; Tatullo M; Gaharwar AK
    Curr Osteoporos Rep; 2016 Jun; 14(3):87-94. PubMed ID: 27048473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnology-Boosted Biomaterials for Osteoarthritis Treatment: Current Status and Future Perspectives.
    Liu L; Tang H; Wang Y
    Int J Nanomedicine; 2023; 18():4969-4983. PubMed ID: 37693887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleic Acid Nanotechnology for Diagnostics and Therapeutics in Acute Kidney Injury.
    Ying Y; Tang Q; Han D; Mou S
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.
    Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S
    J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(6):1-57. PubMed ID: 23074475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NIR light-facilitated bone tissue engineering.
    Feng Q; Zhou X; He C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(1):e1925. PubMed ID: 37632228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.
    Santo VE; Gomes ME; Mano JF; Reis RL
    Nanomedicine (Lond); 2012 Jul; 7(7):1045-66. PubMed ID: 22846091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Development of Extracellular Vesicle-Integrated Biomaterials for Bone Regeneration.
    Zhou Y; Xiao Y
    Adv Exp Med Biol; 2020; 1250():97-108. PubMed ID: 32601940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide-Based Biomaterials in Tissue Engineering: A Review.
    Jin M; Shi J; Zhu W; Yao H; Wang DA
    Tissue Eng Part B Rev; 2021 Dec; 27(6):604-626. PubMed ID: 33267648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.