These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 37116198)
1. An artificial neural network model to diagnose non-obstructive azoospermia based on RNA-binding protein-related genes. Peng F; Muhuitijiang B; Zhou J; Liang H; Zhang Y; Zhou R Aging (Albany NY); 2023 Apr; 15(8):3120-3140. PubMed ID: 37116198 [TBL] [Abstract][Full Text] [Related]
2. Identification and validation of diagnostic signature genes in non-obstructive azoospermia by machine learning. Ran L; Gao Z; Chen Q; Cui F; Liu X; Xue B Aging (Albany NY); 2023 May; 15(10):4465-4480. PubMed ID: 37227814 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of immune status in testis and macrophage polarization associated with testicular damage in patients with nonobstructive azoospermia. Zheng W; Zhang S; Jiang S; Huang Z; Chen X; Guo H; Li M; Zheng S Am J Reprod Immunol; 2021 Nov; 86(5):e13481. PubMed ID: 34192390 [TBL] [Abstract][Full Text] [Related]
4. Identifying potential biomarkers for non-obstructive azoospermia using WGCNA and machine learning algorithms. Tang Q; Su Q; Wei L; Wang K; Jiang T Front Endocrinol (Lausanne); 2023; 14():1108616. PubMed ID: 37854191 [TBL] [Abstract][Full Text] [Related]
5. A 3-Gene Random Forest Model to Diagnose Non-obstructive Azoospermia Based on Transcription Factor-Related Henes. Zhou R; Liang J; Chen Q; Tian H; Yang C; Liu C Reprod Sci; 2023 Jan; 30(1):233-246. PubMed ID: 35715550 [TBL] [Abstract][Full Text] [Related]
6. Construction and external validation of a 5-gene random forest model to diagnose non-obstructive azoospermia based on the single-cell RNA sequencing of testicular tissue. Zhou R; Lv X; Chen T; Chen Q; Tian H; Yang C; Guo W; Liu C Aging (Albany NY); 2021 Nov; 13(21):24219-24235. PubMed ID: 34738918 [TBL] [Abstract][Full Text] [Related]
7. Identification and validation of SHC1 and FGFR1 as novel immune-related oxidative stress biomarkers of non-obstructive azoospermia. Pan Y; Chen X; Zhou H; Xu M; Li Y; Wang Q; Xu Z; Ren C; Liu L; Liu X Front Endocrinol (Lausanne); 2024; 15():1356959. PubMed ID: 39391879 [TBL] [Abstract][Full Text] [Related]
8. Altered Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia. Wang Z; Ding Z; Guan Y; Liu C; Wang L; Shan W; Yang J Comput Math Methods Med; 2021; 2021():5533483. PubMed ID: 34221106 [TBL] [Abstract][Full Text] [Related]
10. A comparative cross-platform analysis of cuproptosis-related genes in human nonobstructive azoospermia: An observational study. Jiang S; Wei Y; Li Y; Liu W; Wang Z; Meng X; Zhu Q; Shen L Medicine (Baltimore); 2024 Aug; 103(31):e39176. PubMed ID: 39093776 [TBL] [Abstract][Full Text] [Related]
11. Constructing a seventeen-gene signature model for non-obstructive azoospermia based on integrated transcriptome analyses and WGCNA. Chen Y; Yuan P; Gu L; Bai J; Ouyang S; Sun T; Liu K; Wang Z; Liu C Reprod Biol Endocrinol; 2023 Mar; 21(1):30. PubMed ID: 36945018 [TBL] [Abstract][Full Text] [Related]
12. Identification and functional analysis of spermatogenesis-associated gene modules in azoospermia by weighted gene coexpression network analysis. Zheng W; Zou Z; Lin S; Chen X; Wang F; Li X; Dai J J Cell Biochem; 2019 Mar; 120(3):3934-3944. PubMed ID: 30269365 [TBL] [Abstract][Full Text] [Related]
13. Sequencing of a 'mouse azoospermia' gene panel in azoospermic men: identification of RNF212 and STAG3 mutations as novel genetic causes of meiotic arrest. Riera-Escamilla A; Enguita-Marruedo A; Moreno-Mendoza D; Chianese C; Sleddens-Linkels E; Contini E; Benelli M; Natali A; Colpi GM; Ruiz-Castañé E; Maggi M; Baarends WM; Krausz C Hum Reprod; 2019 Jun; 34(6):978-988. PubMed ID: 31125047 [TBL] [Abstract][Full Text] [Related]
14. Infertility network and hub genes for nonobstructive azoospermia utilizing integrative analysis. Han B; Yan Z; Yu S; Ge W; Li Y; Wang Y; Yang B; Shen W; Jiang H; Sun Z Aging (Albany NY); 2021 Feb; 13(5):7052-7066. PubMed ID: 33621950 [TBL] [Abstract][Full Text] [Related]
15. Identification of biomarkers associated with macrophage infiltration in non-obstructive azoospermia using single-cell transcriptomic and microarray data. Luo X; Zheng H; Nai Z; Li M; Li Y; Lin N; Li Y; Wu Z Ann Transl Med; 2023 Jan; 11(2):55. PubMed ID: 36819497 [TBL] [Abstract][Full Text] [Related]
16. Over-expression of hsa_circ_0000116 in patients with non-obstructive azoospermia and its predictive value in testicular sperm retrieval. Lv MQ; Zhou L; Ge P; Li YX; Zhang J; Zhou DX Andrology; 2020 Nov; 8(6):1834-1843. PubMed ID: 32735753 [TBL] [Abstract][Full Text] [Related]
17. Construction of m6A-Related Gene Prediction Model and Subtype Analysis in Non-Obstructive Azoospermia Based on Bioinformatics. Li G; Che K; Wu J; Yang B Am J Reprod Immunol; 2024 Jul; 92(1):e13892. PubMed ID: 38958252 [TBL] [Abstract][Full Text] [Related]
18. Potential of testis-derived circular RNAs in seminal plasma to predict the outcome of microdissection testicular sperm extraction in patients with idiopathic non-obstructive azoospermia. Ji C; Wang Y; Wei X; Zhang X; Cong R; Yao L; Qin C; Song N Hum Reprod; 2021 Sep; 36(10):2649-2660. PubMed ID: 34477868 [TBL] [Abstract][Full Text] [Related]
19. Prediction of sperm extraction in non-obstructive azoospermia patients: a machine-learning perspective. Zeadna A; Khateeb N; Rokach L; Lior Y; Har-Vardi I; Harlev A; Huleihel M; Lunenfeld E; Levitas E Hum Reprod; 2020 Jul; 35(7):1505-1514. PubMed ID: 32538428 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic analysis of the Non-Obstructive Azoospermia (NOA) to address gene expression regulation in human testis. Balagannavar G; Basavaraju K; Bajpai AK; Davuluri S; Kannan S; S Srini V; S Chandrashekar D; Chitturi N; K Acharya K Syst Biol Reprod Med; 2023 Jun; 69(3):196-214. PubMed ID: 36883778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]