These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 37116265)
1. DeepCancerMap: A versatile deep learning platform for target- and cell-based anticancer drug discovery. Wu J; Xiao Y; Lin M; Cai H; Zhao D; Li Y; Luo H; Tang C; Wang L Eur J Med Chem; 2023 Jul; 255():115401. PubMed ID: 37116265 [TBL] [Abstract][Full Text] [Related]
2. FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction. Cai H; Zhang H; Zhao D; Wu J; Wang L Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36124766 [TBL] [Abstract][Full Text] [Related]
3. MalariaFlow: A comprehensive deep learning platform for multistage phenotypic antimalarial drug discovery. Lin M; Cai J; Wei Y; Peng X; Luo Q; Li B; Chen Y; Wang L Eur J Med Chem; 2024 Nov; 277():116776. PubMed ID: 39173285 [TBL] [Abstract][Full Text] [Related]
4. Large-scale comparison of machine learning methods for profiling prediction of kinase inhibitors. Wu J; Chen Y; Wu J; Zhao D; Huang J; Lin M; Wang L J Cheminform; 2024 Jan; 16(1):13. PubMed ID: 38291477 [TBL] [Abstract][Full Text] [Related]
5. Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction. Tan X; Yu Y; Duan K; Zhang J; Sun P; Sun H Curr Top Med Chem; 2020; 20(21):1858-1867. PubMed ID: 32648840 [TBL] [Abstract][Full Text] [Related]
6. DEEPCYPs: A deep learning platform for enhanced cytochrome P450 activity prediction. Ai D; Cai H; Wei J; Zhao D; Chen Y; Wang L Front Pharmacol; 2023; 14():1099093. PubMed ID: 37101544 [TBL] [Abstract][Full Text] [Related]
7. Ligand- and structure-based identification of novel CDK9 inhibitors for the potential treatment of leukemia. Zhang H; Huang J; Chen R; Cai H; Chen Y; He S; Xu J; Zhang J; Wang L Bioorg Med Chem; 2022 Oct; 72():116994. PubMed ID: 36087428 [TBL] [Abstract][Full Text] [Related]
8. DeepScreening: a deep learning-based screening web server for accelerating drug discovery. Liu Z; Du J; Fang J; Yin Y; Xu G; Xie L Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31608949 [TBL] [Abstract][Full Text] [Related]
9. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Rifaioglu AS; Atas H; Martin MJ; Cetin-Atalay R; Atalay V; Doğan T Brief Bioinform; 2019 Sep; 20(5):1878-1912. PubMed ID: 30084866 [TBL] [Abstract][Full Text] [Related]
10. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines. Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344 [TBL] [Abstract][Full Text] [Related]
11. Learning with multiple pairwise kernels for drug bioactivity prediction. Cichonska A; Pahikkala T; Szedmak S; Julkunen H; Airola A; Heinonen M; Aittokallio T; Rousu J Bioinformatics; 2018 Jul; 34(13):i509-i518. PubMed ID: 29949975 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Enables Accurate and Rapid Prediction of Active Molecules Against Breast Cancer Cells. He S; Zhao D; Ling Y; Cai H; Cai Y; Zhang J; Wang L Front Pharmacol; 2021; 12():796534. PubMed ID: 34975493 [TBL] [Abstract][Full Text] [Related]
13. Deep learning in image-based phenotypic drug discovery. Krentzel D; Shorte SL; Zimmer C Trends Cell Biol; 2023 Jul; 33(7):538-554. PubMed ID: 36623998 [TBL] [Abstract][Full Text] [Related]
14. Machine learning models for drug-target interactions: current knowledge and future directions. D'Souza S; Prema KV; Balaji S Drug Discov Today; 2020 Apr; 25(4):748-756. PubMed ID: 32171918 [TBL] [Abstract][Full Text] [Related]
15. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636 [TBL] [Abstract][Full Text] [Related]
16. QPoweredCompound2DeNovoDrugPropMax - a novel programmatic tool incorporating deep learning and Geoffrey A S B; Madaj R; Valluri PP J Biomol Struct Dyn; 2023 Mar; 41(5):1790-1797. PubMed ID: 35007471 [TBL] [Abstract][Full Text] [Related]
17. JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs. Kong D; Yamori T Bioorg Med Chem; 2012 Mar; 20(6):1947-51. PubMed ID: 22336246 [TBL] [Abstract][Full Text] [Related]
18. A compact review of progress and prospects of deep learning in drug discovery. Li H; Zou L; Kowah JAH; He D; Liu Z; Ding X; Wen H; Wang L; Yuan M; Liu X J Mol Model; 2023 Mar; 29(4):117. PubMed ID: 36976427 [TBL] [Abstract][Full Text] [Related]
19. Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction. Robinson MC; Glen RC; Lee AA J Comput Aided Mol Des; 2020 Jul; 34(7):717-730. PubMed ID: 31960253 [TBL] [Abstract][Full Text] [Related]
20. D3AI-CoV: a deep learning platform for predicting drug targets and for virtual screening against COVID-19. Yang Y; Zhou D; Zhang X; Shi Y; Han J; Zhou L; Wu L; Ma M; Li J; Peng S; Xu Z; Zhu W Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]