BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37116363)

  • 1. Mining reactive triplet carbonyls in biological systems.
    Ramos LD; Gomes TMV; Stevani CV; Bechara EJH
    J Photochem Photobiol B; 2023 Jun; 243():112712. PubMed ID: 37116363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,3-diene probes for detection of triplet carbonyls in biological systems.
    Velosa AC; Baader WJ; Stevani CV; Mano CM; Bechara EJ
    Chem Res Toxicol; 2007 Aug; 20(8):1162-9. PubMed ID: 17630714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excited singlet molecular O₂(¹Δg) is generated enzymatically from excited carbonyls in the dark.
    Mano CM; Prado FM; Massari J; Ronsein GE; Martinez GR; Miyamoto S; Cadet J; Sies H; Medeiros MH; Bechara EJ; Di Mascio P
    Sci Rep; 2014 Aug; 4():5938. PubMed ID: 25087485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid peroxidation-dependent chemiluminescence from the cyclization of alkylperoxyl radicals to dioxetane radical intermediates.
    Tímmins GS; dos Santos RE; Whitwood AC; Catalani LH; Di Mascio P; Gilbert BC; Bechara EJ
    Chem Res Toxicol; 1997 Oct; 10(10):1090-6. PubMed ID: 9348430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the C-525 laser dye as a chemiluminescence sensitizer for lipid peroxidation in biological membranes: a comparison with chlorophyll-a.
    Sharov VS; Briviba K; Sies H
    Free Radic Biol Med; 1996; 21(6):833-43. PubMed ID: 8902529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species.
    Pospíšil P; Prasad A; Rác M
    Biomolecules; 2019 Jul; 9(7):. PubMed ID: 31284470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinylacetone oxidation by oxygen/peroxynitrite: a possible source of reactive intermediates in hereditary tyrosinemia type I.
    Royer LO; Knudsen FS; de Oliveira MA; Tavares MF; Bechara EJ
    Chem Res Toxicol; 2004 May; 17(5):598-604. PubMed ID: 15144216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxynitrite-initiated oxidation of acetoacetate and 2-methylacetoacetate esters by oxygen: potential sources of reactive intermediates in keto acidoses.
    Royer LO; Knudsen FS; de Oliveira MA; Tavares MF; Bechara EJ
    Chem Res Toxicol; 2004 Dec; 17(12):1725-32. PubMed ID: 15606150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemiluminescent oxidation of ribose catalyzed by horseradish peroxidase in presence of hydrogen peroxide.
    Medeiros MH; Sies H
    Free Radic Biol Med; 1989; 6(6):565-71. PubMed ID: 2502483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riboflavin as a photosensitizer. Effects on human health and food quality.
    Cardoso DR; Libardi SH; Skibsted LH
    Food Funct; 2012 May; 3(5):487-502. PubMed ID: 22406738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Tryptophan Oxidation Arises by "Dark" Photoreactions from Chemiexcited Triplet Acetone.
    O'Connor RM; Greer A
    Photochem Photobiol; 2021 Mar; 97(2):456-459. PubMed ID: 33386615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide.
    Di Mascio P; Bechara EJ; Medeiros MH; Briviba K; Sies H
    FEBS Lett; 1994 Dec; 355(3):287-9. PubMed ID: 7988691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of reactive oxygen species in ultra-weak photon emission in biological systems.
    Pospíšil P; Prasad A; Rác M
    J Photochem Photobiol B; 2014 Oct; 139():11-23. PubMed ID: 24674863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. l-Tryptophan Interactions with the Horseradish Peroxidase-Catalyzed Generation of Triplet Acetone.
    Ramos LD; Prado FM; Stevani CV; Di Mascio P; Bechara EJH
    Photochem Photobiol; 2021 Mar; 97(2):327-334. PubMed ID: 33296511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplet-Energy Quenching Functions of Antioxidant Molecules.
    Angelé-Martínez C; Goncalves LCP; Premi S; Augusto FA; Palmatier MA; Amar SK; Brash DE
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Singlet oxygen-mediated damage to proteins and its consequences.
    Davies MJ
    Biochem Biophys Res Commun; 2003 Jun; 305(3):761-70. PubMed ID: 12763058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilirubin chemiluminescence induced by the attack of active oxygen species.
    Watanabe H; Nagoshi T; Agatsuma S; Kobayashi M; Inaba H
    J Biolumin Chemilumin; 1992 Jan; 7(1):13-9. PubMed ID: 1322633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzophenone photosensitized DNA damage.
    Cuquerella MC; Lhiaubet-Vallet V; Cadet J; Miranda MA
    Acc Chem Res; 2012 Sep; 45(9):1558-70. PubMed ID: 22698517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct evidence of singlet molecular oxygen [O2(1Deltag)] production in the reaction of linoleic acid hydroperoxide with peroxynitrite.
    Miyamoto S; Martinez GR; Martins AP; Medeiros MH; Di Mascio P
    J Am Chem Soc; 2003 Apr; 125(15):4510-7. PubMed ID: 12683821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.