BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37116471)

  • 1. Regulation of Pax3 by Proteasomal Degradation of Monoubiquitinated Protein in Skeletal Muscle Progenitors.
    Boutet SC; Disatnik MH; Chan LS; Iori K; Rando TA
    Cell; 2023 Apr; 186(9):2035. PubMed ID: 37116471
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors.
    Boutet SC; Disatnik MH; Chan LS; Iori K; Rando TA
    Cell; 2007 Jul; 130(2):349-62. PubMed ID: 17662948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taf1 regulates Pax3 protein by monoubiquitination in skeletal muscle progenitors.
    Boutet SC; Biressi S; Iori K; Natu V; Rando TA
    Mol Cell; 2010 Dec; 40(5):749-61. PubMed ID: 21145483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Proteasomal degradation of Pax3 in skeletal muscle progenitors: one ubiquitin does the trick!].
    Boutet SC; Rando TA
    Med Sci (Paris); 2008 Jan; 24(1):31-3. PubMed ID: 18198106
    [No Abstract]   [Full Text] [Related]  

  • 5. Endothelial cell specification in the somite is compromised in Pax3-positive progenitors of Foxc1/2 conditional mutants, with loss of forelimb myogenesis.
    Mayeuf-Louchart A; Montarras D; Bodin C; Kume T; Vincent SD; Buckingham M
    Development; 2016 Mar; 143(5):872-9. PubMed ID: 26839363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention of Pax3 expression in satellite cells of muscle spindles.
    Kirkpatrick LJ; Yablonka-Reuveni Z; Rosser BW
    J Histochem Cytochem; 2010 Apr; 58(4):317-27. PubMed ID: 20026670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Notch regulation of myogenic versus endothelial fates of cells that migrate from the somite to the limb.
    Mayeuf-Louchart A; Lagha M; Danckaert A; Rocancourt D; Relaix F; Vincent SD; Buckingham M
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8844-9. PubMed ID: 24927569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regenerative potential of Pax3/Pax7 on skeletal muscle injury.
    Azhar M; Wardhani BWK; Renesteen E
    J Genet Eng Biotechnol; 2022 Oct; 20(1):143. PubMed ID: 36251225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis.
    Goljanek-Whysall K; Sweetman D; Abu-Elmagd M; Chapnik E; Dalmay T; Hornstein E; Münsterberg A
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11936-41. PubMed ID: 21730146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.
    Sakai H; Sato T; Sakurai H; Yamamoto T; Hanaoka K; Montarras D; Sehara-Fujisawa A
    PLoS One; 2013; 8(5):e63016. PubMed ID: 23671652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle differentiation of embryonic mesoangioblasts requires pax3 activity.
    Messina G; Sirabella D; Monteverde S; Galvez BG; Tonlorenzi R; Schnapp E; De Angelis L; Brunelli S; Relaix F; Buckingham M; Cossu G
    Stem Cells; 2009 Jan; 27(1):157-64. PubMed ID: 18845762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression.
    Crist CG; Montarras D; Pallafacchina G; Rocancourt D; Cumano A; Conway SJ; Buckingham M
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13383-7. PubMed ID: 19666532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pax3 modulates expression of the c-Met receptor during limb muscle development.
    Epstein JA; Shapiro DN; Cheng J; Lam PY; Maas RL
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4213-8. PubMed ID: 8633043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells.
    Relaix F; Rocancourt D; Mansouri A; Buckingham M
    Nature; 2005 Jun; 435(7044):948-53. PubMed ID: 15843801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small molecule inhibition of PAX3-FOXO1 through AKT activation suppresses malignant phenotypes of alveolar rhabdomyosarcoma.
    Jothi M; Mal M; Keller C; Mal AK
    Mol Cancer Ther; 2013 Dec; 12(12):2663-74. PubMed ID: 24107448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core Transcription Factors Promote Induction of PAX3-Positive Skeletal Muscle Stem Cells.
    Sato T; Higashioka K; Sakurai H; Yamamoto T; Goshima N; Ueno M; Sotozono C
    Stem Cell Reports; 2019 Aug; 13(2):352-365. PubMed ID: 31353225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Housing system influences abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles.
    Yin HD; Li DY; Zhang L; Yang MY; Zhao XL; Wang Y; Liu YP; Zhu Q
    Poult Sci; 2014 Jun; 93(6):1337-43. PubMed ID: 24879683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Pax3-expressing cells from adult blood vessels.
    Goupille O; Pallafacchina G; Relaix F; Conway SJ; Cumano A; Robert B; Montarras D; Buckingham M
    J Cell Sci; 2011 Dec; 124(Pt 23):3980-8. PubMed ID: 22159413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat.
    Ling YH; Sui MH; Zheng Q; Wang KY; Wu H; Li WY; Liu Y; Chu MX; Fang FG; Xu LN
    Sci Rep; 2018 Mar; 8(1):3909. PubMed ID: 29500394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Polycomb group (PcG) protein EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx).
    Ciarapica R; De Salvo M; Carcarino E; Bracaglia G; Adesso L; Leoncini PP; Dall'Agnese A; Walters ZS; Verginelli F; De Sio L; Boldrini R; Inserra A; Bisogno G; Rosolen A; Alaggio R; Ferrari A; Collini P; Locatelli M; Stifani S; Screpanti I; Rutella S; Yu Q; Marquez VE; Shipley J; Valente S; Mai A; Miele L; Puri PL; Locatelli F; Palacios D; Rota R
    Oncogene; 2014 Aug; 33(32):4173-84. PubMed ID: 24213577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.