These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37116477)

  • 1. Prototype development of bilateral arm mirror-like-robotic rehabilitation device for acute stroke patients.
    Klinkwan P; Kongmaroeng C; Muengtaweepongsa S; Limtrakarn W
    Biomed Phys Eng Express; 2023 May; 9(4):. PubMed ID: 37116477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a 6-DoF Cost-effective Differential-drive based Robotic system for Upper-Limb Stroke Rehabilitation.
    Jonna P; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1423-1427. PubMed ID: 36085923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects.
    Hesse S; Schulte-Tigges G; Konrad M; Bardeleben A; Werner C
    Arch Phys Med Rehabil; 2003 Jun; 84(6):915-20. PubMed ID: 12808550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting.
    Sivan M; Gallagher J; Makower S; Keeling D; Bhakta B; O'Connor RJ; Levesley M
    J Neuroeng Rehabil; 2014 Dec; 11():163. PubMed ID: 25495889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES.
    Milot MH; Spencer SJ; Chan V; Allington JP; Klein J; Chou C; Bobrow JE; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2013 Dec; 10():112. PubMed ID: 24354476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of mirror therapy can be improved by simultaneous robotic assistance.
    Schrader M; Sterr A; Kettlitz R; Wohlmeiner A; Buschfort R; Dohle C; Bamborschke S
    Restor Neurol Neurosci; 2022; 40(3):185-194. PubMed ID: 35848045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases.
    Staubli P; Nef T; Klamroth-Marganska V; Riener R
    J Neuroeng Rehabil; 2009 Dec; 6():46. PubMed ID: 20017939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial.
    Klamroth-Marganska V; Blanco J; Campen K; Curt A; Dietz V; Ettlin T; Felder M; Fellinghauer B; Guidali M; Kollmar A; Luft A; Nef T; Schuster-Amft C; Stahel W; Riener R
    Lancet Neurol; 2014 Feb; 13(2):159-66. PubMed ID: 24382580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Resonating Arm Exerciser: design and pilot testing of a mechanically passive rehabilitation device that mimics robotic active assistance.
    Zondervan DK; Palafox L; Hernandez J; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2013 Apr; 10():39. PubMed ID: 23597303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients.
    Otaka E; Otaka Y; Kasuga S; Nishimoto A; Yamazaki K; Kawakami M; Ushiba J; Liu M
    J Neuroeng Rehabil; 2015 Aug; 12():66. PubMed ID: 26265327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit.
    Abdullah HA; Tarry C; Lambert C; Barreca S; Allen BO
    J Neuroeng Rehabil; 2011 Aug; 8():50. PubMed ID: 21871095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating robotic-assisted telerehabilitation in a home program to improve arm function following stroke.
    Linder SM; Reiss A; Buchanan S; Sahu K; Rosenfeldt AB; Clark C; Wolf SL; Alberts JL
    J Neurol Phys Ther; 2013 Sep; 37(3):125-32. PubMed ID: 23872687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A haptic-robotic platform for upper-limb reaching stroke therapy: preliminary design and evaluation results.
    Lam P; Hebert D; Boger J; Lacheray H; Gardner D; Apkarian J; Mihailidis A
    J Neuroeng Rehabil; 2008 May; 5():15. PubMed ID: 18498641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH
    J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaching exercise for chronic paretic upper extremity after stroke using a novel rehabilitation robot with arm-weight support and concomitant electrical stimulation and vibration: before-and-after feasibility trial.
    Amano Y; Noma T; Etoh S; Miyata R; Kawamura K; Shimodozono M
    Biomed Eng Online; 2020 May; 19(1):28. PubMed ID: 32375788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on a New Rehabilitation Robot for Balance Disorders.
    Wu J; Liu Y; Zhao J; Jia Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.