BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37116493)

  • 1. Complementary strategies for directing in vivo transcription factor binding through DNA binding domains and intrinsically disordered regions.
    Kumar DK; Jonas F; Jana T; Brodsky S; Carmi M; Barkai N
    Mol Cell; 2023 May; 83(9):1462-1473.e5. PubMed ID: 37116493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Order through disorder: The role of intrinsically disordered regions in transcription factor binding specificity.
    Brodsky S; Jana T; Barkai N
    Curr Opin Struct Biol; 2021 Dec; 71():110-115. PubMed ID: 34303077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The architecture of binding cooperativity between densely bound transcription factors.
    Lupo O; Kumar DK; Livne R; Chappleboim M; Levy I; Barkai N
    Cell Syst; 2023 Sep; 14(9):732-745.e5. PubMed ID: 37527656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speed-Specificity Trade-Offs in the Transcription Factors Search for Their Genomic Binding Sites.
    Jana T; Brodsky S; Barkai N
    Trends Genet; 2021 May; 37(5):421-432. PubMed ID: 33414013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic disorder within and flanking the DNA-binding domains of human transcription factors.
    Guo X; Bulyk ML; Hartemink AJ
    Pac Symp Biocomput; 2012; ():104-15. PubMed ID: 22174267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsically Disordered Regions Direct Transcription Factor In Vivo Binding Specificity.
    Brodsky S; Jana T; Mittelman K; Chapal M; Kumar DK; Carmi M; Barkai N
    Mol Cell; 2020 Aug; 79(3):459-471.e4. PubMed ID: 32553192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination and inference of eukaryotic transcription factor sequence specificity.
    Weirauch MT; Yang A; Albu M; Cote AG; Montenegro-Montero A; Drewe P; Najafabadi HS; Lambert SA; Mann I; Cook K; Zheng H; Goity A; van Bakel H; Lozano JC; Galli M; Lewsey MG; Huang E; Mukherjee T; Chen X; Reece-Hoyes JS; Govindarajan S; Shaulsky G; Walhout AJM; Bouget FY; Ratsch G; Larrondo LF; Ecker JR; Hughes TR
    Cell; 2014 Sep; 158(6):1431-1443. PubMed ID: 25215497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network modeling of differential binding between wild-type and mutant CTCF reveals putative binding preferences for zinc fingers 1-2.
    Kaplow IM; Banerjee A; Foo CS
    BMC Genomics; 2022 Apr; 23(1):295. PubMed ID: 35410161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation.
    Minezaki Y; Homma K; Kinjo AR; Nishikawa K
    J Mol Biol; 2006 Jun; 359(4):1137-49. PubMed ID: 16697407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.
    Ozonov EA; van Nimwegen E
    PLoS Comput Biol; 2013; 9(8):e1003181. PubMed ID: 23990766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular grammar of protein disorder guiding genome-binding locations.
    Jonas F; Carmi M; Krupkin B; Steinberger J; Brodsky S; Jana T; Barkai N
    Nucleic Acids Res; 2023 Jun; 51(10):4831-4844. PubMed ID: 36938874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsically disordered regions of the Msn2 transcription factor encode multiple functions using interwoven sequence grammars.
    Mindel V; Brodsky S; Cohen A; Manadre W; Jonas F; Carmi M; Barkai N
    Nucleic Acids Res; 2024 Mar; 52(5):2260-2272. PubMed ID: 38109289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional trends in structural classes of the DNA binding domains of regulatory transcription factors.
    McCord RP; Bulyk ML
    Pac Symp Biocomput; 2008; ():441-52. PubMed ID: 18229706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic identification of non-canonical transcription factor motifs.
    Chumpitaz-Diaz L; Samee MAH; Pollard KS
    BMC Mol Cell Biol; 2021 Aug; 22(1):44. PubMed ID: 34465294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the evolution of transcription factor binding preferences in complex eukaryotes.
    Rosanova A; Colliva A; Osella M; Caselle M
    Sci Rep; 2017 Aug; 7(1):7596. PubMed ID: 28790414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.