These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37116670)
1. The classification of stages of epiretinal membrane using convolutional neural network on optical coherence tomography image. Hung CL; Lin KH; Lee YK; Mrozek D; Tsai YT; Lin CH Methods; 2023 Jun; 214():28-34. PubMed ID: 37116670 [TBL] [Abstract][Full Text] [Related]
2. Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography. Lo YC; Lin KH; Bair H; Sheu WH; Chang CS; Shen YC; Hung CL Sci Rep; 2020 May; 10(1):8424. PubMed ID: 32439844 [TBL] [Abstract][Full Text] [Related]
3. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Sotoudeh-Paima S; Jodeiri A; Hajizadeh F; Soltanian-Zadeh H Comput Biol Med; 2022 May; 144():105368. PubMed ID: 35259614 [TBL] [Abstract][Full Text] [Related]
5. CLAHE-CapsNet: Efficient retina optical coherence tomography classification using capsule networks with contrast limited adaptive histogram equalization. Opoku M; Weyori BA; Adekoya AF; Adu K PLoS One; 2023; 18(11):e0288663. PubMed ID: 38032915 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based prediction of the retinal structural alterations after epiretinal membrane surgery. Kim J; Chin HS Sci Rep; 2023 Nov; 13(1):19275. PubMed ID: 37935769 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Visual Impairment in Epiretinal Membrane and Feature Analysis: A Deep Learning Approach Using Optical Coherence Tomography. Hsia Y; Lin YY; Wang BS; Su CY; Lai YH; Hsieh YT Asia Pac J Ophthalmol (Phila); 2023 Jan-Feb 01; 12(1):21-28. PubMed ID: 36706331 [TBL] [Abstract][Full Text] [Related]
8. Early Diagnosis of Multiple Sclerosis Using Swept-Source Optical Coherence Tomography and Convolutional Neural Networks Trained with Data Augmentation. López-Dorado A; Ortiz M; Satue M; Rodrigo MJ; Barea R; Sánchez-Morla EM; Cavaliere C; Rodríguez-Ascariz JM; Orduna-Hospital E; Boquete L; Garcia-Martin E Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009710 [TBL] [Abstract][Full Text] [Related]
9. LOCTseg: A lightweight fully convolutional network for end-to-end optical coherence tomography segmentation. Parra-Mora E; da Silva Cruz LA Comput Biol Med; 2022 Nov; 150():106174. PubMed ID: 36252364 [TBL] [Abstract][Full Text] [Related]
10. Fully Automated Postlumpectomy Breast Margin Assessment Utilizing Convolutional Neural Network Based Optical Coherence Tomography Image Classification Method. Mojahed D; Ha RS; Chang P; Gan Y; Yao X; Angelini B; Hibshoosh H; Taback B; Hendon CP Acad Radiol; 2020 May; 27(5):e81-e86. PubMed ID: 31324579 [TBL] [Abstract][Full Text] [Related]
11. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. Fang L; Wang C; Li S; Rabbani H; Chen X; Liu Z IEEE Trans Med Imaging; 2019 Aug; 38(8):1959-1970. PubMed ID: 30763240 [TBL] [Abstract][Full Text] [Related]
12. Automated Detection of Epiretinal Membranes in OCT Images Using Deep Learning. Tang Y; Gao X; Wang W; Dan Y; Zhou L; Su S; Wu J; Lv H; He Y Ophthalmic Res; 2023; 66(1):238-246. PubMed ID: 36170844 [TBL] [Abstract][Full Text] [Related]
13. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Alqudah AM Med Biol Eng Comput; 2020 Jan; 58(1):41-53. PubMed ID: 31728935 [TBL] [Abstract][Full Text] [Related]
14. A new convolutional neural network based on combination of circlets and wavelets for macular OCT classification. Arian R; Vard A; Kafieh R; Plonka G; Rabbani H Sci Rep; 2023 Dec; 13(1):22582. PubMed ID: 38114582 [TBL] [Abstract][Full Text] [Related]
15. Retinal surface en face optical coherence tomography: a new imaging approach in epiretinal membrane surgery. Rispoli M; Le Rouic JF; Lesnoni G; Colecchio L; Catalano S; Lumbroso B Retina; 2012; 32(10):2070-6. PubMed ID: 22842490 [TBL] [Abstract][Full Text] [Related]
16. Clinical evaluation of deep learning systems for assisting in the diagnosis of the epiretinal membrane grade in general ophthalmologists. Yan Y; Huang X; Jiang X; Gao Z; Liu X; Jin K; Ye J Eye (Lond); 2024 Mar; 38(4):730-736. PubMed ID: 37848677 [TBL] [Abstract][Full Text] [Related]
17. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification. Mohan R; Ganapathy K; Arunmozhi R J Popul Ther Clin Pharmacol; 2022; 29(3):e112-e122. PubMed ID: 36196946 [TBL] [Abstract][Full Text] [Related]
19. Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images. Kuwayama S; Ayatsuka Y; Yanagisono D; Uta T; Usui H; Kato A; Takase N; Ogura Y; Yasukawa T J Ophthalmol; 2019; 2019():6319581. PubMed ID: 31093370 [TBL] [Abstract][Full Text] [Related]
20. Classifying neovascular age-related macular degeneration with a deep convolutional neural network based on optical coherence tomography images. Han J; Choi S; Park JI; Hwang JS; Han JM; Lee HJ; Ko J; Yoon J; Hwang DD Sci Rep; 2022 Feb; 12(1):2232. PubMed ID: 35140257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]