These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37117292)

  • 1. Piezoelectric energy extraction from a cylinder undergoing vortex-induced vibration using internal resonance.
    Joy A; Joshi V; Narendran K; Ghoshal R
    Sci Rep; 2023 Apr; 13(1):6924. PubMed ID: 37117292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region.
    Borazjani I; Sotiropoulos F
    J Fluid Mech; 2009; 621():321-364. PubMed ID: 19693281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Investigation of Reynolds Number and Spring Stiffness Effects on Vortex-Induced Vibration Driven Wind Energy Harvesting Triboelectric Nanogenerator.
    Chang Q; Fu Z; Zhang S; Wang M; Pan X
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re = 104) and low mass ratio using the RANS code.
    Khan NB; Ibrahim Z; Nguyen LTT; Javed MF; Jameel M
    PLoS One; 2017; 12(10):e0185832. PubMed ID: 28982172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration.
    Jia J; Shan X; Upadrashta D; Xie T; Yang Y; Song R
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30562985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-Liquid Triboelectric Nanogenerator Based on Vortex-Induced Resonance.
    Li X; Zhang D; Zhang D; Li Z; Wu H; Zhou Y; Wang B; Guo H; Peng Y
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal energy harvesting from vortex-induced vibrations of cables.
    Antoine GO; de Langre E; Michelin S
    Proc Math Phys Eng Sci; 2016 Nov; 472(2195):20160583. PubMed ID: 27956880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation.
    Lee YJ; Qi Y; Zhou G; Lua KB
    Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Degree-of-Freedom Piezoelectric Energy Harvesting from Vortex-Induced Vibration.
    Lu D; Li Z; Hu G; Zhou B; Yang Y; Zhang G
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer.
    Salem S; Fraňa K
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number.
    Jus Y; Longatte E; Chassaing JC; Sagaut P
    J Press Vessel Technol; 2014 Oct; 136(5):0513051-513057. PubMed ID: 25278637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation.
    Ambrożkiewicz B; Czyż Z; Karpiński P; Stączek P; Litak G; Grabowski Ł
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive double pendulum in the wake of a cylinder forced to rotate emulates a cyclic human walking gait.
    Carleton AG; Sup FC; Modarres-Sadeghi Y
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35576923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Karman Vortex Creation Using Cylinder for Flutter Energy Harvester Device.
    Atrah AB; Ab-Rahman MS; Salleh H; Nuawi MZ; Mohd Nor MJ; Jamaludin NB
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of a piezoelectric energy harvester in the form of vortex oscillation for fixed disturbance fluid type.
    He L; Zhou J; Han Y; Liu R; Tian X; Liu L
    Rev Sci Instrum; 2022 Jun; 93(6):064705. PubMed ID: 35777997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex-induced vibrations of a flexible cylinder at large inclination angle.
    Bourguet R; Triantafyllou MS
    Philos Trans A Math Phys Eng Sci; 2015 Jan; 373(2033):. PubMed ID: 25512586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flapping dynamics of an inverted flag behind a cylinder.
    Ojo O; Kohtanen E; Jiang A; Brody J; Erturk A; Shoele K
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36179696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe.
    Zhou M; Al-Furjan MSH; Wang B
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on Vortex-Induced Vibration Experiment of a Standing Variable-Tension Deepsea Riser Based on BFBG Sensor Technology.
    Li P; Cong A; Dong Z; Wang Y; Liu Y; Guo H; Li X; Fu Q
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.