These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 37117467)
1. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. Lesk C; Coffel E; Winter J; Ray D; Zscheischler J; Seneviratne SI; Horton R Nat Food; 2021 Sep; 2(9):683-691. PubMed ID: 37117467 [TBL] [Abstract][Full Text] [Related]
2. More accurate specification of water supply shows its importance for global crop production. Proctor J; Rigden A; Chan D; Huybers P Nat Food; 2022 Sep; 3(9):753-763. PubMed ID: 37118152 [TBL] [Abstract][Full Text] [Related]
3. Projected temperature increases may require shifts in the growing season of cool-season crops and the growing locations of warm-season crops. Marklein A; Elias E; Nico P; Steenwerth K Sci Total Environ; 2020 Dec; 746():140918. PubMed ID: 32750574 [TBL] [Abstract][Full Text] [Related]
4. Drought risk in Moldova under global warming and possible crop adaptation strategies. Vicente-Serrano SM; Juez C; Potopová V; Boincean B; Murphy C; Domínguez-Castro F; Eklundh L; Peña-Angulo D; Noguera I; Jin H; Conradt T; Garcia-Herrera R; Garrido-Perez JM; Barriopedro D; Gutiérrez JM; Iturbide M; Lorenzo-Lacruz J; Kenawy AE Ann N Y Acad Sci; 2024 Aug; 1538(1):144-161. PubMed ID: 39086254 [TBL] [Abstract][Full Text] [Related]
5. Contrasting impacts of dry versus humid heat on US corn and soybean yields. Ting M; Lesk C; Liu C; Li C; Horton RM; Coffel ED; Rogers CDW; Singh D Sci Rep; 2023 Jan; 13(1):710. PubMed ID: 36639417 [TBL] [Abstract][Full Text] [Related]
6. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sultan B; Defrance D; Iizumi T Sci Rep; 2019 Sep; 9(1):12834. PubMed ID: 31492929 [TBL] [Abstract][Full Text] [Related]
7. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO Jin Z; Zhuang Q; Wang J; Archontoulis SV; Zobel Z; Kotamarthi VR Glob Chang Biol; 2017 Jul; 23(7):2687-2704. PubMed ID: 28063186 [TBL] [Abstract][Full Text] [Related]
8. Ozone risk for crops and pastures in present and future climates. Fuhrer J Naturwissenschaften; 2009 Feb; 96(2):173-94. PubMed ID: 19020849 [TBL] [Abstract][Full Text] [Related]
9. Short- and long-term warming events on photosynthetic physiology, growth, and yields of field grown crops. Bernacchi CJ; Ruiz-Vera UM; Siebers MH; DeLucia NJ; Ort DR Biochem J; 2023 Jul; 480(13):999-1014. PubMed ID: 37418286 [TBL] [Abstract][Full Text] [Related]
10. Climate Shifts within Major Agricultural Seasons for +1.5 and +2.0 °C Worlds: HAPPI Projections and AgMIP Modeling Scenarios. Ruane AC; Phillips MM; Rosenzweig C Agric For Meteorol; 2018 Sep; 259():329-344. PubMed ID: 30880854 [TBL] [Abstract][Full Text] [Related]
11. The shifting influence of drought and heat stress for crops in northeast Australia. Lobell DB; Hammer GL; Chenu K; Zheng B; McLean G; Chapman SC Glob Chang Biol; 2015 Nov; 21(11):4115-27. PubMed ID: 26152643 [TBL] [Abstract][Full Text] [Related]
12. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest. Liu L; Basso B PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907 [TBL] [Abstract][Full Text] [Related]
13. Dryland Cropping Systems, Weed Communities, and Disease Status Modulate the Effect of Climate Conditions on Wheat Soil Bacterial Communities. Ishaq SL; Seipel T; Yeoman C; Menalled FD mSphere; 2020 Jul; 5(4):. PubMed ID: 32669466 [TBL] [Abstract][Full Text] [Related]
14. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Sun Q; Miao C; Hanel M; Borthwick AGL; Duan Q; Ji D; Li H Environ Int; 2019 Jul; 128():125-136. PubMed ID: 31048130 [TBL] [Abstract][Full Text] [Related]
15. Increased probability and severity of compound dry and hot growing seasons over world's major croplands. He Y; Hu X; Xu W; Fang J; Shi P Sci Total Environ; 2022 Jun; 824():153885. PubMed ID: 35182627 [TBL] [Abstract][Full Text] [Related]
16. Projective analysis of staple food crop productivity in adaptation to future climate change in China. Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124 [TBL] [Abstract][Full Text] [Related]
17. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. Matiu M; Ankerst DP; Menzel A PLoS One; 2017; 12(5):e0178339. PubMed ID: 28552938 [TBL] [Abstract][Full Text] [Related]
18. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Liu B; Martre P; Ewert F; Porter JR; Challinor AJ; Müller C; Ruane AC; Waha K; Thorburn PJ; Aggarwal PK; Ahmed M; Balkovič J; Basso B; Biernath C; Bindi M; Cammarano D; De Sanctis G; Dumont B; Espadafor M; Eyshi Rezaei E; Ferrise R; Garcia-Vila M; Gayler S; Gao Y; Horan H; Hoogenboom G; Izaurralde RC; Jones CD; Kassie BT; Kersebaum KC; Klein C; Koehler AK; Maiorano A; Minoli S; Montesino San Martin M; Naresh Kumar S; Nendel C; O'Leary GJ; Palosuo T; Priesack E; Ripoche D; Rötter RP; Semenov MA; Stöckle C; Streck T; Supit I; Tao F; Van der Velde M; Wallach D; Wang E; Webber H; Wolf J; Xiao L; Zhang Z; Zhao Z; Zhu Y; Asseng S Glob Chang Biol; 2019 Apr; 25(4):1428-1444. PubMed ID: 30536680 [TBL] [Abstract][Full Text] [Related]
19. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing. Duncan JM; Dash J; Atkinson PM Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864 [TBL] [Abstract][Full Text] [Related]
20. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Jin Z; Zhuang Q; Tan Z; Dukes JS; Zheng B; Melillo JM Glob Chang Biol; 2016 Sep; 22(9):3112-26. PubMed ID: 27251794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]