These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 37118006)

  • 1. Emerging chemistries and molecular designs for flow batteries.
    Zhang L; Feng R; Wang W; Yu G
    Nat Rev Chem; 2022 Aug; 6(8):524-543. PubMed ID: 37118006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies.
    Li Z; Lu YC
    Adv Mater; 2020 Nov; 32(47):e2002132. PubMed ID: 33094532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review.
    Fischer P; Mazúr P; Krakowiak J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries.
    Zhu F; Guo W; Fu Y
    Chem Asian J; 2023 Jan; 18(2):e202201098. PubMed ID: 36454229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional materials for aqueous redox flow batteries: merits and applications.
    Zhu F; Guo W; Fu Y
    Chem Soc Rev; 2023 Nov; 52(23):8410-8446. PubMed ID: 37947236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage.
    Yan R; Wang Q
    Adv Mater; 2018 Nov; 30(47):e1802406. PubMed ID: 30118550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in the Development of Organic and Organometallic Redox Shuttles for Lithium-Ion Redox Flow Batteries.
    Pham-Truong TN; Wang Q; Ghilane J; Randriamahazaka H
    ChemSusChem; 2020 May; 13(9):2142-2159. PubMed ID: 32293115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits.
    Chen R
    Chem Asian J; 2023 Jan; 18(1):e202201024. PubMed ID: 36367282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox Targeting of Energy Materials for Energy Storage and Conversion.
    Zhang F; Gao M; Huang S; Zhang H; Wang X; Liu L; Han M; Wang Q
    Adv Mater; 2022 Jun; 34(25):e2104562. PubMed ID: 34595770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Battery technologies for large-scale stationary energy storage.
    Soloveichik GL
    Annu Rev Chem Biomol Eng; 2011; 2():503-27. PubMed ID: 22432629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials and Designs for Power Supply Systems in Skin-Interfaced Electronics.
    Li J; Zhao J; Rogers JA
    Acc Chem Res; 2019 Jan; 52(1):53-62. PubMed ID: 30525449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Development of Electrolytes for Aqueous Organic Redox Flow Batteries (Aorfbs): Current Status, Challenges, and Prospects.
    Mansha M; Ayub A; Khan IA; Ali S; Alzahrani AS; Khan M; Arshad M; Rauf A; Akram Khan S
    Chem Rec; 2024 Jan; 24(1):e202300284. PubMed ID: 38010347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids.
    Chen R; Bresser D; Saraf M; Gerlach P; Balducci A; Kunz S; Schröder D; Passerini S; Chen J
    ChemSusChem; 2020 May; 13(9):2205-2219. PubMed ID: 31995281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rechargeable Batteries for Grid Scale Energy Storage.
    Zhu Z; Jiang T; Ali M; Meng Y; Jin Y; Cui Y; Chen W
    Chem Rev; 2022 Nov; 122(22):16610-16751. PubMed ID: 36150378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azo Compounds as Active Materials of Energy Storage Systems.
    Shimizu T; Tanifuji N; Yoshikawa H
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202206093. PubMed ID: 35718885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.