These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 3711818)

  • 1. Development of fast singing muscles in a katydid.
    Ready NE
    J Exp Zool; 1986 Apr; 238(1):43-54. PubMed ID: 3711818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional development of cricket ring muscles.
    Ready NE; Najm RE
    J Exp Zool; 1985 Jan; 233(1):35-50. PubMed ID: 3973549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innervation is necessary for the development of fast contraction kinetics of singing muscles in a katydid.
    Novicki A; Josephson RK
    J Exp Zool; 1987 Jun; 242(3):309-15. PubMed ID: 3612051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional heterogeneity in an insect muscle.
    Stokes DR; Josephson RK; Price RB
    J Exp Zool; 1975 Nov; 194(2):379-407. PubMed ID: 1194875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid postembryonic development of a cricket flight muscle.
    Novicki A
    J Exp Zool; 1989 Jun; 250(3):253-62. PubMed ID: 2760572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neural control of contraction in a fast insect muscle.
    Josephson RK; Stokes DR; Chen V
    J Exp Zool; 1975 Sep; 193(3):281-300. PubMed ID: 1176906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of growth and ultrastructural maturation of a cricket flight muscle.
    Novicki A
    J Exp Zool; 1989 Jun; 250(3):263-72. PubMed ID: 2760573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural activity pattern is not necessary for the development of adult ultrastructure in katydid (Neoconocephalus robustus) singing muscles.
    Novicki A
    Cell Tissue Res; 1989 Mar; 255(3):641-4. PubMed ID: 2706665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial changes in flight muscles of normal and flightless Drosophila melanogaster with age.
    Sohal RD
    J Morphol; 1975 Mar; 145(3):337-53. PubMed ID: 804040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [An electron microscopic study of the structure of the indirect flight musculature at the pupal stage in the muscle mutant of Drosophila melanogaster].
    Generalova MV; Kriukova ME; Miasniankina EN
    Ontogenez; 1994; 25(6):33-41. PubMed ID: 7777254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomy and histochemistry of spread-wing posture in birds. 2. Gliding flight in the California gull, Larus californicus: a paradox of fast fibers and posture.
    Meyers RA; Mathias E
    J Morphol; 1997 Sep; 233(3):237-47. PubMed ID: 9259122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanics of sound production in Panacanthus pallicornis (Orthoptera: Tettigoniidae: Conocephalinae): the stridulatory motor patterns.
    Montealegre-Z F; Mason AC
    J Exp Biol; 2005 Apr; 208(Pt 7):1219-37. PubMed ID: 15781883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic terminals persist following degeneration of "flight" muscle during development of a flightless grasshopper.
    Arbas EA; Tolbert LP
    J Neurobiol; 1986 Nov; 17(6):627-36. PubMed ID: 3794689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motoneurons of the flight power muscles of the blowfly Calliphora erythrocephala: structures and mutual dye coupling.
    Schlurmann M; Hausen K
    J Comp Neurol; 2007 Jan; 500(3):448-64. PubMed ID: 17120285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of glycerol and urea on the ultrastructure and contractility of fast and slow rat skeletal muscles.
    Krolenko SA; Karpenko DO
    Gen Physiol Biophys; 1983 Oct; 2(5):409-24. PubMed ID: 6678774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils.
    Flucher BE; Takekura H; Franzini-Armstrong C
    Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex wing motion during stridulation in the katydid Nastonotus foreli (Orthoptera: Tettigoniidae: Pseudophyllinae).
    Baker AA; Jonsson T; Aldridge S; Montealegre-Z F
    J Insect Physiol; 2019 Apr; 114():100-108. PubMed ID: 30898560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Submaximal power output from the dorsolongitudinal flight muscles of the hawkmoth Manduca sexta.
    Tu MS; Daniel TL
    J Exp Biol; 2004 Dec; 207(Pt 26):4651-62. PubMed ID: 15579560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in the ultrastructure of wing muscles in the ontogenesis of the house cricket (Acheta domestica L.)].
    Bocharova-Messner OM; Ianchuk KA
    Dokl Akad Nauk SSSR; 1966 Oct; 170(4):948-51. PubMed ID: 5998229
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.