These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 37118377)

  • 21. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells.
    Sarkar TJ; Quarta M; Mukherjee S; Colville A; Paine P; Doan L; Tran CM; Chu CR; Horvath S; Qi LS; Bhutani N; Rando TA; Sebastiano V
    Nat Commun; 2020 Mar; 11(1):1545. PubMed ID: 32210226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aging Human Hematopoietic Stem Cells Manifest Profound Epigenetic Reprogramming of Enhancers That May Predispose to Leukemia.
    Adelman ER; Huang HT; Roisman A; Olsson A; Colaprico A; Qin T; Lindsley RC; Bejar R; Salomonis N; Grimes HL; Figueroa ME
    Cancer Discov; 2019 Aug; 9(8):1080-1101. PubMed ID: 31085557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional activation of endogenous Oct4 via the CRISPR/dCas9 activator ameliorates Hutchinson-Gilford progeria syndrome in mice.
    Kim J; Hwang Y; Kim S; Chang Y; Kim Y; Kwon Y; Kim J
    Aging Cell; 2023 Jun; 22(6):e13825. PubMed ID: 36964992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Safer Path to Cellular Rejuvenation: Endogenous Oct4 Activation via CRISPR/dCas9 in Progeria Mouse Models.
    Hu D; Borgne EL; Meinl R
    Cell Reprogram; 2023 Aug; 25(4):136-138. PubMed ID: 37327373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice.
    Krishnan V; Chow MZ; Wang Z; Zhang L; Liu B; Liu X; Zhou Z
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12325-30. PubMed ID: 21746928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical roles of Cyclin D1 in mouse embryonic fibroblast cell reprogramming.
    Oh HR; Kim J; Kim J
    FEBS J; 2016 Dec; 283(24):4549-4568. PubMed ID: 27790870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sox2 and Klf4 as the Functional Core in Pluripotency Induction without Exogenous Oct4.
    An Z; Liu P; Zheng J; Si C; Li T; Chen Y; Ma T; Zhang MQ; Zhou Q; Ding S
    Cell Rep; 2019 Nov; 29(7):1986-2000.e8. PubMed ID: 31722212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation.
    Mitchell W; Goeminne LJE; Tyshkovskiy A; Zhang S; Chen JY; Paulo JA; Pierce KA; Choy AH; Clish CB; Gygi SP; Gladyshev VN
    bioRxiv; 2023 Nov; ():. PubMed ID: 37425825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Versatile In Vivo System to Study Myc in Cell Reprogramming.
    Senís E; Mosteiro L; Grimm D; Abad M
    Methods Mol Biol; 2021; 2318():267-279. PubMed ID: 34019296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the potential of in vivo reprogramming for studying embryonic development, tissue regeneration, and organismal aging.
    Ohta S; Yamada Y
    Curr Opin Genet Dev; 2023 Aug; 81():102067. PubMed ID: 37356342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption.
    Siddiqui S; Lustig A; Carter A; Sankar M; Daimon CM; Premont RT; Etienne H; van Gastel J; Azmi A; Janssens J; Becker KG; Zhang Y; Wood W; Lehrmann E; Martin JG; Martin B; Taub DD; Maudsley S
    Aging (Albany NY); 2017 Mar; 9(3):706-740. PubMed ID: 28260693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4.
    Wang L; Huang D; Huang C; Yin Y; Vali K; Zhang M; Tang Y
    Stem Cell Res; 2017 Dec; 25():88-97. PubMed ID: 29125994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The dosage of Patz1 modulates reprogramming process.
    Ma H; Ow JR; Tan BC; Goh Z; Feng B; Loh YH; Fedele M; Li H; Wu Q
    Sci Rep; 2014 Dec; 4():7519. PubMed ID: 25515777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular reprogramming and epigenetic rejuvenation.
    Simpson DJ; Olova NN; Chandra T
    Clin Epigenetics; 2021 Sep; 13(1):170. PubMed ID: 34488874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient genetic reprogramming of unmodified somatic neural progenitors uncovers the essential requirement of Oct4 and Klf4.
    Di Stefano B; Prigione A; Broccoli V
    Stem Cells Dev; 2009 Jun; 18(5):707-16. PubMed ID: 18724799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implications of Cellular Aging in Cardiac Reprogramming.
    Passaro F; Testa G
    Front Cardiovasc Med; 2018; 5():43. PubMed ID: 29755986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.
    Menendez JA; Vellon L; Oliveras-Ferraros C; Cufí S; Vazquez-Martin A
    Cell Cycle; 2011 Nov; 10(21):3658-77. PubMed ID: 22052357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The aging signature: a hallmark of induced pluripotent stem cells?
    Rohani L; Johnson AA; Arnold A; Stolzing A
    Aging Cell; 2014 Feb; 13(1):2-7. PubMed ID: 24256351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenetic rejuvenation by partial reprogramming.
    Puri D; Wagner W
    Bioessays; 2023 Apr; 45(4):e2200208. PubMed ID: 36871150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early Life Reprogramming-Based Treatment Promotes Longevity.
    Pessina P; Di Stefano B
    Cell Reprogram; 2023 Feb; 25(1):9-10. PubMed ID: 36594927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.