BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37118754)

  • 1. Validation of multiparametric MRI based prediction model in identification of pseudoprogression in glioblastomas.
    de Godoy LL; Mohan S; Wang S; Nasrallah MP; Sakai Y; O'Rourke DM; Bagley S; Desai A; Loevner LA; Poptani H; Chawla S
    J Transl Med; 2023 Apr; 21(1):287. PubMed ID: 37118754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of treatment response to dendritic cell vaccine in patients with glioblastoma using a multiparametric MRI-based prediction model.
    de Godoy LL; Chawla S; Brem S; Wang S; O'Rourke DM; Nasrallah MP; Desai A; Loevner LA; Liau LM; Mohan S
    J Neurooncol; 2023 May; 163(1):173-183. PubMed ID: 37129737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional echo planar spectroscopic imaging for differentiation of true progression from pseudoprogression in patients with glioblastoma.
    Verma G; Chawla S; Mohan S; Wang S; Nasrallah M; Sheriff S; Desai A; Brem S; O'Rourke DM; Wolf RL; Maudsley AA; Poptani H
    NMR Biomed; 2019 Feb; 32(2):e4042. PubMed ID: 30556932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma.
    Chawla S; Bukhari S; Afridi OM; Wang S; Yadav SK; Akbari H; Verma G; Nath K; Haris M; Bagley S; Davatzikos C; Loevner LA; Mohan S
    NMR Biomed; 2022 Jul; 35(7):e4719. PubMed ID: 35233862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning model for discriminating true progression from pseudoprogression in glioblastoma patients.
    Moassefi M; Faghani S; Conte GM; Kowalchuk RO; Vahdati S; Crompton DJ; Perez-Vega C; Cabreja RAD; Vora SA; Quiñones-Hinojosa A; Parney IF; Trifiletti DM; Erickson BJ
    J Neurooncol; 2022 Sep; 159(2):447-455. PubMed ID: 35852738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma.
    Akbari H; Rathore S; Bakas S; Nasrallah MP; Shukla G; Mamourian E; Rozycki M; Bagley SJ; Rudie JD; Flanders AE; Dicker AP; Desai AS; O'Rourke DM; Brem S; Lustig R; Mohan S; Wolf RL; Bilello M; Martinez-Lage M; Davatzikos C
    Cancer; 2020 Jun; 126(11):2625-2636. PubMed ID: 32129893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.
    Wang S; Martinez-Lage M; Sakai Y; Chawla S; Kim SG; Alonso-Basanta M; Lustig RA; Brem S; Mohan S; Wolf RL; Desai A; Poptani H
    AJNR Am J Neuroradiol; 2016 Jan; 37(1):28-36. PubMed ID: 26450533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudoprogression in GBM versus true progression in patients with glioblastoma: A multiapproach analysis.
    Sidibe I; Tensaouti F; Gilhodes J; Cabarrou B; Filleron T; Desmoulin F; Ken S; Noël G; Truc G; Sunyach MP; Charissoux M; Magné N; Lotterie JA; Roques M; Péran P; Cohen-Jonathan Moyal E; Laprie A
    Radiother Oncol; 2023 Apr; 181():109486. PubMed ID: 36706959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging.
    Choi YJ; Kim HS; Jahng GH; Kim SJ; Suh DC
    Acta Radiol; 2013 May; 54(4):448-54. PubMed ID: 23592805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinguishing Progression from Pseudoprogression in Glioblastoma Using
    Nabavizadeh A; Bagley SJ; Doot RK; Ware JB; Young AJ; Ghodasara S; Zhao C; Anderson H; Schubert E; Carpenter EL; Till J; Henderson F; Pantel AR; Chen HI; Lee JYK; Amankulor NM; O'Rourke DM; Desai A; Nasrallah MP; Brem S
    J Nucl Med; 2023 Jun; 64(6):852-858. PubMed ID: 36549916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma.
    Young RJ; Gupta A; Shah AD; Graber JJ; Zhang Z; Shi W; Holodny AI; Omuro AM
    Neurology; 2011 May; 76(22):1918-24. PubMed ID: 21624991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial.
    Liu ZC; Yan LF; Hu YC; Sun YZ; Tian Q; Nan HY; Yu Y; Sun Q; Wang W; Cui GB
    BMC Med Imaging; 2017 Feb; 17(1):10. PubMed ID: 28143434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging.
    Suh CH; Kim HS; Choi YJ; Kim N; Kim SJ
    AJNR Am J Neuroradiol; 2013 Dec; 34(12):2278-86. PubMed ID: 23828115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis.
    Song YS; Choi SH; Park CK; Yi KS; Lee WJ; Yun TJ; Kim TM; Lee SH; Kim JH; Sohn CH; Park SH; Kim IH; Jahng GH; Chang KH
    Korean J Radiol; 2013; 14(4):662-72. PubMed ID: 23901325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging.
    Chu HH; Choi SH; Ryoo I; Kim SC; Yeom JA; Shin H; Jung SC; Lee AL; Yoon TJ; Kim TM; Lee SH; Park CK; Kim JH; Sohn CH; Park SH; Kim IH
    Radiology; 2013 Dec; 269(3):831-40. PubMed ID: 23771912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing Tumor Recurrence From Radiation Necrosis in Treated Glioblastoma Using Multiparametric MRI.
    Feng A; Yuan P; Huang T; Li L; Lyu J
    Acad Radiol; 2022 Sep; 29(9):1320-1331. PubMed ID: 34896001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of progressive disease from pseudoprogression using 3D PCASL and DSC perfusion MRI in patients with glioblastoma.
    Manning P; Daghighi S; Rajaratnam MK; Parthiban S; Bahrami N; Dale AM; Bolar D; Piccioni DE; McDonald CR; Farid N
    J Neurooncol; 2020 May; 147(3):681-690. PubMed ID: 32239431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The predictive value of absolute lymphocyte counts on tumor progression and pseudoprogression in patients with glioblastoma.
    Xi J; Hassan B; Katumba RGN; Khaddour K; Govindan A; Luo J; Huang J; Campian JL
    BMC Cancer; 2021 Mar; 21(1):285. PubMed ID: 33726710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.