These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 37119624)
41. Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Shafqat A; Al-Zaqri N; Tahir A; Alsalme A Saudi J Biol Sci; 2021 Mar; 28(3):1739-1749. PubMed ID: 33732057 [TBL] [Abstract][Full Text] [Related]
42. Synthetic Biopolymers and Their Composites: Advantages and Limitations-An Overview. Mtibe A; Motloung MP; Bandyopadhyay J; Ray SS Macromol Rapid Commun; 2021 Aug; 42(15):e2100130. PubMed ID: 34216411 [TBL] [Abstract][Full Text] [Related]
43. Biodegradable polymers: A real opportunity to solve marine plastic pollution? Manfra L; Marengo V; Libralato G; Costantini M; De Falco F; Cocca M J Hazard Mater; 2021 Aug; 416():125763. PubMed ID: 33839500 [TBL] [Abstract][Full Text] [Related]
44. Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review. Diyana ZN; Jumaidin R; Selamat MZ; Ghazali I; Julmohammad N; Huda N; Ilyas RA Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925897 [TBL] [Abstract][Full Text] [Related]
45. A dual hesitant q-rung orthopair enhanced MARCOS methodology under uncertainty to determine a used PPE kit disposal. Kang D; Anuja A; Narayanamoorthy S; Gangemi M; Ahmadian A Environ Sci Pollut Res Int; 2022 Dec; 29(59):89625-89642. PubMed ID: 35857161 [TBL] [Abstract][Full Text] [Related]
46. A review of starch-based biocomposites reinforced with plant fibers. Schutz GF; de Ávila Gonçalves S; Alves RMV; Vieira RP Int J Biol Macromol; 2024 Mar; 261(Pt 2):129916. PubMed ID: 38311134 [TBL] [Abstract][Full Text] [Related]
47. Sustainable utilization of fruit and vegetable waste bioresources for bioplastics production. Gong L; Passari AK; Yin C; Kumar Thakur V; Newbold J; Clark W; Jiang Y; Kumar S; Gupta VK Crit Rev Biotechnol; 2024 Mar; 44(2):236-254. PubMed ID: 36642423 [TBL] [Abstract][Full Text] [Related]
48. Degradation of starch-based bioplastic bags in the pelagic and benthic zones of the Gulf of Oman. Abed RMM; Al-Hinai M; Al-Balushi Y; Haider L; Muthukrishnan T; Rinner U Mar Pollut Bull; 2023 Oct; 195():115496. PubMed ID: 37703633 [TBL] [Abstract][Full Text] [Related]
49. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. Behera S; Priyadarshanee M; Vandana ; Das S Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614 [TBL] [Abstract][Full Text] [Related]
50. Plastic waste as a global challenge: are biodegradable plastics the answer to the plastic waste problem? Narancic T; O'Connor KE Microbiology (Reading); 2019 Feb; 165(2):129-137. PubMed ID: 30497540 [TBL] [Abstract][Full Text] [Related]
51. Preparation of bioplastic consisting of salmon milt DNA. Yamada M; Kawamura M; Yamada T Sci Rep; 2022 May; 12(1):7423. PubMed ID: 35523933 [TBL] [Abstract][Full Text] [Related]
52. Knowledge and perception of different plastic bags and packages: A case study in Brazil. La Fuente CIA; Tribst AAL; Augusto PED J Environ Manage; 2022 Jan; 301():113881. PubMed ID: 34619585 [TBL] [Abstract][Full Text] [Related]
53. Biodegradation of plastics: current scenario and future prospects for environmental safety. Ahmed T; Shahid M; Azeem F; Rasul I; Shah AA; Noman M; Hameed A; Manzoor N; Manzoor I; Muhammad S Environ Sci Pollut Res Int; 2018 Mar; 25(8):7287-7298. PubMed ID: 29332271 [TBL] [Abstract][Full Text] [Related]
54. A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs. Kim MS; Chang H; Zheng L; Yan Q; Pfleger BF; Klier J; Nelson K; Majumder EL; Huber GW Chem Rev; 2023 Aug; 123(16):9915-9939. PubMed ID: 37470246 [TBL] [Abstract][Full Text] [Related]
56. Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review. Vieyra H; Molina-Romero JM; Calderón-Nájera JD; Santana-Díaz A Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015669 [TBL] [Abstract][Full Text] [Related]
57. From Soy Waste to Bioplastics: Industrial Proof of Concept. Bagnani M; Peydayesh M; Knapp T; Appenzeller E; Sutter D; Kränzlin S; Gong Y; Wehrle A; Greuter S; Bucher M; Schmid M; Mezzenga R Biomacromolecules; 2024 Mar; 25(3):2033-2040. PubMed ID: 38327086 [TBL] [Abstract][Full Text] [Related]
59. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Zhao X; Cornish K; Vodovotz Y Environ Sci Technol; 2020 Apr; 54(8):4712-4732. PubMed ID: 32202110 [TBL] [Abstract][Full Text] [Related]
60. PHA-Based Bioplastic: a Potential Alternative to Address Microplastic Pollution. Acharjee SA; Bharali P; Gogoi B; Sorhie V; Walling B; Alemtoshi Water Air Soil Pollut; 2023; 234(1):21. PubMed ID: 36593989 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]