These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37119768)
1. Copper chelation by d-penicillamine alleviates melanocyte death induced by rhododendrol without inhibiting tyrosinase. Nagatani K; Abe Y; Homma T; Fujii J; Suzuki T Biochem Biophys Res Commun; 2023 Jun; 663():71-77. PubMed ID: 37119768 [TBL] [Abstract][Full Text] [Related]
2. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Sasaki M; Kondo M; Sato K; Umeda M; Kawabata K; Takahashi Y; Suzuki T; Matsunaga K; Inoue S Pigment Cell Melanoma Res; 2014 Sep; 27(5):754-63. PubMed ID: 24890809 [TBL] [Abstract][Full Text] [Related]
3. Substantial evidence for the rhododendrol-induced generation of hydroxyl radicals that causes melanocyte cytotoxicity and induces chemical leukoderma. Gabe Y; Miyaji A; Kohno M; Hachiya A; Moriwaki S; Baba T J Dermatol Sci; 2018 Sep; 91(3):311-316. PubMed ID: 30005897 [TBL] [Abstract][Full Text] [Related]
4. Upregulation of CD86 and IL-12 by rhododendrol in THP-1 cells cocultured with melanocytes through ROS and ATP. Katahira Y; Sakamoto E; Watanabe A; Furusaka Y; Inoue S; Hasegawa H; Mizoguchi I; Yo K; Yamaji F; Toyoda A; Yoshimoto T J Dermatol Sci; 2022 Dec; 108(3):167-177. PubMed ID: 36610941 [TBL] [Abstract][Full Text] [Related]
5. Biochemical Mechanism of Rhododendrol-Induced Leukoderma. Ito S; Wakamatsu K Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29439519 [No Abstract] [Full Text] [Related]
6. The mechanism of melanocytes-specific cytotoxicity induced by phenol compounds having a prooxidant effect, relating to the appearance of leukoderma. Nagata T; Ito S; Itoga K; Kanazawa H; Masaki H Biomed Res Int; 2015; 2015():479798. PubMed ID: 25861631 [TBL] [Abstract][Full Text] [Related]
7. Biochemical, cytological, and immunological mechanisms of rhododendrol-induced leukoderma. Tokura Y; Fujiyama T; Ikeya S; Tatsuno K; Aoshima M; Kasuya A; Ito T J Dermatol Sci; 2015 Mar; 77(3):146-9. PubMed ID: 25726326 [TBL] [Abstract][Full Text] [Related]
8. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold. Kasamatsu S; Hachiya A; Nakamura S; Yasuda Y; Fujimori T; Takano K; Moriwaki S; Hase T; Suzuki T; Matsunaga K J Dermatol Sci; 2014 Oct; 76(1):16-24. PubMed ID: 25082450 [TBL] [Abstract][Full Text] [Related]
9. Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin. Abe Y; Okamura K; Kawaguchi M; Hozumi Y; Aoki H; Kunisada T; Ito S; Wakamatsu K; Matsunaga K; Suzuki T J Dermatol Sci; 2016 Jan; 81(1):35-43. PubMed ID: 26547111 [TBL] [Abstract][Full Text] [Related]
10. Human tyrosinase is able to oxidize both enantiomers of rhododendrol. Ito S; Gerwat W; Kolbe L; Yamashita T; Ojika M; Wakamatsu K Pigment Cell Melanoma Res; 2014 Nov; 27(6):1149-53. PubMed ID: 25130058 [TBL] [Abstract][Full Text] [Related]
11. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. Ito S; Wakamatsu K J Dermatol Sci; 2015 Oct; 80(1):18-24. PubMed ID: 26228294 [TBL] [Abstract][Full Text] [Related]
12. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity. Ito S; Ojika M; Yamashita T; Wakamatsu K Pigment Cell Melanoma Res; 2014 Sep; 27(5):744-53. PubMed ID: 24903082 [TBL] [Abstract][Full Text] [Related]
13. 4-(4-Hydroxyphenyl)-2-butanol (rhododendrol)-induced melanocyte cytotoxicity is enhanced by UVB exposure through generation of oxidative stress. Goto N; Tsujimoto M; Nagai H; Masaki T; Ito S; Wakamatsu K; Nishigori C Exp Dermatol; 2018 Jul; 27(7):754-762. PubMed ID: 29630780 [TBL] [Abstract][Full Text] [Related]
14. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RD-pheomelanin and covalent binding with thiol proteins. Ito S; Okura M; Nakanishi Y; Ojika M; Wakamatsu K; Yamashita T Pigment Cell Melanoma Res; 2015 May; 28(3):295-306. PubMed ID: 25713930 [TBL] [Abstract][Full Text] [Related]
15. Tyrosinase-Catalyzed Oxidation of the Leukoderma-Inducing Agent Raspberry Ketone Produces (E)-4-(3-Oxo-1-butenyl)-1,2-benzoquinone: Implications for Melanocyte Toxicity. Ito S; Hinoshita M; Suzuki E; Ojika M; Wakamatsu K Chem Res Toxicol; 2017 Mar; 30(3):859-868. PubMed ID: 28219012 [TBL] [Abstract][Full Text] [Related]
16. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds. Nishimaki-Mogami T; Ito S; Cui H; Akiyama T; Tamehiro N; Adachi R; Wakamatsu K; Ikarashi Y; Kondo K J Dermatol Sci; 2022 Nov; 108(2):77-86. PubMed ID: 36567223 [TBL] [Abstract][Full Text] [Related]
17. Naturally-Occurring Tyrosinase Inhibitors Classified by Enzyme Kinetics and Copper Chelation. Kim HD; Choi H; Abekura F; Park JY; Yang WS; Yang SH; Kim CH Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175965 [TBL] [Abstract][Full Text] [Related]
18. Glutathione maintenance is crucial for survival of melanocytes after exposure to rhododendrol. Kondo M; Kawabata K; Sato K; Yamaguchi S; Hachiya A; Takahashi Y; Inoue S Pigment Cell Melanoma Res; 2016 Sep; 29(5):541-9. PubMed ID: 27223685 [TBL] [Abstract][Full Text] [Related]
19. [Leukoderma caused by chemicals: mechanisms underlying 4-alkyl/aryl-substituted phenols- and rhododendrol-induced melanocyte loss]. Nishimaki-Mogami T Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2015; (133):13-20. PubMed ID: 26821466 [TBL] [Abstract][Full Text] [Related]
20. Effects of rhododendrol and its metabolic products on melanocytic cell growth. Okura M; Yamashita T; Ishii-Osai Y; Yoshikawa M; Sumikawa Y; Wakamatsu K; Ito S J Dermatol Sci; 2015 Nov; 80(2):142-9. PubMed ID: 26282085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]