BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37119793)

  • 1. Polyfluorinated salicylic acid analogs do not interfere with siderophore biosynthesis.
    Hegde P; Orimoloye MO; Sharma S; Engelhart CA; Schnappinger D; Aldrich CC
    Tuberculosis (Edinb); 2023 May; 140():102346. PubMed ID: 37119793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a selective activity-based probe for adenylating enzymes: profiling MbtA Involved in siderophore biosynthesis from Mycobacterium tuberculosis.
    Duckworth BP; Wilson DJ; Nelson KM; Boshoff HI; Barry CE; Aldrich CC
    ACS Chem Biol; 2012 Oct; 7(10):1653-8. PubMed ID: 22796950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pivotal Role for Mycobactin/
    Foreman M; Kolodkin-Gal I; Barkan D
    Microbiol Spectr; 2022 Dec; 10(6):e0262322. PubMed ID: 36321891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages.
    De Voss JJ; Rutter K; Schroeder BG; Su H; Zhu Y; Barry CE
    Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1252-7. PubMed ID: 10655517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin.
    Quadri LE; Sello J; Keating TA; Weinreb PH; Walsh CT
    Chem Biol; 1998 Nov; 5(11):631-45. PubMed ID: 9831524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis.
    Vergnolle O; Xu H; Tufariello JM; Favrot L; Malek AA; Jacobs WR; Blanchard JS
    J Biol Chem; 2016 Oct; 291(42):22315-22326. PubMed ID: 27566542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron uptake and transport by the carboxymycobactin-mycobactin siderophore machinery of Mycobacterium tuberculosis is dependent on the iron-regulated protein HupB.
    Choudhury M; Koduru TN; Kumar N; Salimi S; Desai K; Prabhu NP; Sritharan M
    Biometals; 2021 Jun; 34(3):511-528. PubMed ID: 33609202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis.
    Madigan CA; Cheng TY; Layre E; Young DC; McConnell MJ; Debono CA; Murry JP; Wei JR; Barry CE; Rodriguez GM; Matsunaga I; Rubin EJ; Moody DB
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1257-62. PubMed ID: 22232695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling.
    Jones CM; Wells RM; Madduri AV; Renfrow MB; Ratledge C; Moody DB; Niederweis M
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1945-50. PubMed ID: 24497493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterial siderophore: A review on chemistry and biology of siderophore and its potential as a target for tuberculosis.
    Patel K; Butala S; Khan T; Suvarna V; Sherje A; Dravyakar B
    Eur J Med Chem; 2018 Sep; 157():783-790. PubMed ID: 30142615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Target-Based and Phenotypic Screening Approaches for the Identification of Anti-Tubercular Agents That Bind to the Mycobacterial Adenylating Enzyme MbtA.
    Ferguson L; Wells G; Bhakta S; Johnson J; Guzman J; Parish T; Prentice RA; Brucoli F
    ChemMedChem; 2019 Oct; 14(19):1735-1741. PubMed ID: 31454170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis.
    Engelhart CA; Aldrich CC
    J Org Chem; 2013 Aug; 78(15):7470-81. PubMed ID: 23805993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Aryl-8-aza-3-deazaadenosine analogues of 5'-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis.
    Krajczyk A; Zeidler J; Januszczyk P; Dawadi S; Boshoff HI; Barry CE; Ostrowski T; Aldrich CC
    Bioorg Med Chem; 2016 Jul; 24(14):3133-43. PubMed ID: 27265685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inability to detect mycobactin in mycobacteria-infected tissues suggests an alternative iron acquisition mechanism by mycobacteria in vivo.
    Lambrecht RS; Collins MT
    Microb Pathog; 1993 Mar; 14(3):229-38. PubMed ID: 8321124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipidomic analysis links mycobactin synthase K to iron uptake and virulence in M. tuberculosis.
    Madigan CA; Martinot AJ; Wei JR; Madduri A; Cheng TY; Young DC; Layre E; Murry JP; Rubin EJ; Moody DB
    PLoS Pathog; 2015 Mar; 11(3):e1004792. PubMed ID: 25815898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5'-O-[N-(salicyl)sulfamoyl]adenosine.
    Neres J; Labello NP; Somu RV; Boshoff HI; Wilson DJ; Vannada J; Chen L; Barry CE; Bennett EM; Aldrich CC
    J Med Chem; 2008 Sep; 51(17):5349-70. PubMed ID: 18690677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake.
    Sritharan M
    J Bacteriol; 2016 Sep; 198(18):2399-409. PubMed ID: 27402628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of iron utilization by Mycobacterium tuberculosis.
    Zhang L; Hendrickson RC; Meikle V; Lefkowitz EJ; Ioerger TR; Niederweis M
    PLoS Pathog; 2020 Feb; 16(2):e1008337. PubMed ID: 32069330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis.
    Wells RM; Jones CM; Xi Z; Speer A; Danilchanka O; Doornbos KS; Sun P; Wu F; Tian C; Niederweis M
    PLoS Pathog; 2013 Jan; 9(1):e1003120. PubMed ID: 23431276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of Mycobacterium thermoresistibile MmpS5 reveals a conserved disulfide bond across mycobacteria.
    Cuthbert BJ; Mendoza J; de Miranda R; Papavinasasundaram K; Sassetti CM; Goulding CW
    Metallomics; 2024 Mar; 16(3):. PubMed ID: 38425033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.