BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 37119813)

  • 1. CysDB: a human cysteine database based on experimental quantitative chemoproteomics.
    Boatner LM; Palafox MF; Schweppe DK; Backus KM
    Cell Chem Biol; 2023 Jun; 30(6):683-698.e3. PubMed ID: 37119813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*.
    Yan T; Desai HS; Boatner LM; Yen SL; Cao J; Palafox MF; Jami-Alahmadi Y; Backus KM
    Chembiochem; 2021 May; 22(10):1841-1851. PubMed ID: 33442901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome.
    Desai HS; Yan T; Backus KM
    Curr Protoc; 2022 Jul; 2(7):e492. PubMed ID: 35895291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
    White MEH; Gil J; Tate EW
    Cell Chem Biol; 2023 Jul; 30(7):828-838.e4. PubMed ID: 37451266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating multiplexed profiling of protein-ligand interactions: High-throughput plate-based reactive cysteine profiling with minimal input.
    Yang K; Whitehouse RL; Dawson SL; Zhang L; Martin JG; Johnson DS; Paulo JA; Gygi SP; Yu Q
    Cell Chem Biol; 2024 Mar; 31(3):565-576.e4. PubMed ID: 38118439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics.
    Burton NR; Backus KM
    Commun Chem; 2024 Apr; 7(1):80. PubMed ID: 38600184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteinome: The first comprehensive database for proteins with targetable cysteine and their covalent inhibitors.
    Wu S; Luo Howard H; Wang H; Zhao W; Hu Q; Yang Y
    Biochem Biophys Res Commun; 2016 Sep; 478(3):1268-73. PubMed ID: 27553277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-omic stratification of the missense variant cysteinome.
    Desai H; Ofori S; Boatner L; Yu F; Villanueva M; Ung N; Nesvizhskii AI; Backus K
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome.
    Yan T; Julio AR; Villanueva M; Jones AE; Ball AB; Boatner LM; Turmon AC; Nguyễn KB; Yen SL; Desai HS; Divakaruni AS; Backus KM
    Cell Chem Biol; 2023 Jul; 30(7):811-827.e7. PubMed ID: 37419112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics.
    Yan T; Boatner LM; Cui L; Tontonoz P; Backus KM
    bioRxiv; 2023 Oct; ():. PubMed ID: 37904933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity.
    Rabalski AJ; Bogdan AR; Baranczak A
    ACS Chem Biol; 2019 Sep; 14(9):1940-1950. PubMed ID: 31430117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics.
    Yan T; Boatner LM; Cui L; Tontonoz PJ; Backus KM
    JACS Au; 2023 Dec; 3(12):3506-3523. PubMed ID: 38155636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assigning functionality to cysteines by base editing of cancer dependency genes.
    Li H; Ma T; Remsberg JR; Won SJ; DeMeester KE; Njomen E; Ogasawara D; Zhao KT; Huang TP; Lu B; Simon GM; Melillo B; Schreiber SL; Lykke-Andersen J; Liu DR; Cravatt BF
    Nat Chem Biol; 2023 Nov; 19(11):1320-1330. PubMed ID: 37783940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opportunities and challenges for the development of covalent chemical immunomodulators.
    Backus KM; Cao J; Maddox SM
    Bioorg Med Chem; 2019 Aug; 27(15):3421-3439. PubMed ID: 31204229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome.
    Yan T; Julio AR; Villanueva M; Jones AE; Ball AB; Boatner LM; Turmon AC; Yen SL; Desai HS; Divakaruni AS; Backus KM
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling nuclear cysteine ligandability and effects on nuclear localization using proximity labeling-coupled chemoproteomics.
    Peng Q; Weerapana E
    Cell Chem Biol; 2024 Mar; 31(3):550-564.e9. PubMed ID: 38086369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent drug discovery using sulfur(VI) fluoride exchange warheads.
    Huang H; Jones LH
    Expert Opin Drug Discov; 2023 Jul; 18(7):725-735. PubMed ID: 37243622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Search for Covalently Ligandable Proteins in Biological Systems.
    Badshah SL; Mabkhot YN
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27598117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.