These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37119818)

  • 1. Mice identify subgoal locations through an action-driven mapping process.
    Shamash P; Lee S; Saxe AM; Branco T
    Neuron; 2023 Jun; 111(12):1966-1978.e8. PubMed ID: 37119818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol to Study Spatial Subgoal Learning Using Escape Behavior in Mice.
    Shamash P; Branco T
    Bio Protoc; 2022 Jun; 12(12):e4443. PubMed ID: 35864903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mice learn multi-step routes by memorizing subgoal locations.
    Shamash P; Olesen SF; Iordanidou P; Campagner D; Banerjee N; Branco T
    Nat Neurosci; 2021 Sep; 24(9):1270-1279. PubMed ID: 34326540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End-to-End Hierarchical Reinforcement Learning With Integrated Subgoal Discovery.
    Pateria S; Subagdja B; Tan AH; Quek C
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7778-7790. PubMed ID: 34156954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innate heuristics and fast learning support escape route selection in mice.
    Claudi F; Campagner D; Branco T
    Curr Biol; 2022 Jul; 32(13):2980-2987.e5. PubMed ID: 35617953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Value-Based Subgoal Discovery and Path Planning for Reaching Long-Horizon Goals.
    Pateria S; Subagdja B; Tan AH; Quek C
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):10288-10300. PubMed ID: 37022814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural signature of hierarchical reinforcement learning.
    Ribas-Fernandes JJ; Solway A; Diuk C; McGuire JT; Barto AG; Niv Y; Botvinick MM
    Neuron; 2011 Jul; 71(2):370-9. PubMed ID: 21791294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal Encoding in Prefrontal Cortex during Hierarchical Reinforcement Learning.
    Chiang FK; Wallis JD
    J Cogn Neurosci; 2018 Aug; 30(8):1197-1208. PubMed ID: 29694261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive maps in rats and humans for spatial navigation.
    de Cothi W; Nyberg N; Griesbauer EM; Ghanamé C; Zisch F; Lefort JM; Fletcher L; Newton C; Renaudineau S; Bendor D; Grieves R; Duvelle É; Barry C; Spiers HJ
    Curr Biol; 2022 Sep; 32(17):3676-3689.e5. PubMed ID: 35863351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cortico-collicular circuit for orienting to shelter during escape.
    Campagner D; Vale R; Tan YL; Iordanidou P; Pavón Arocas O; Claudi F; Stempel AV; Keshavarzi S; Petersen RS; Margrie TW; Branco T
    Nature; 2023 Jan; 613(7942):111-119. PubMed ID: 36544025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive sequence knowledge: what is learned?
    Wenger JL; Carlson RA
    J Exp Psychol Learn Mem Cogn; 1996 May; 22(3):599-619. PubMed ID: 8656149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of expected learning progress and perceptual novelty to curiosity-driven exploration.
    Poli F; Meyer M; Mars RB; Hunnius S
    Cognition; 2022 Aug; 225():105119. PubMed ID: 35421742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving examples to improve transfer to novel problems.
    Catrambone R
    Mem Cognit; 1994 Sep; 22(5):606-15. PubMed ID: 7968556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating actions into object location memory: a benefit for active versus passive reaching movements.
    Trewartha KM; Case S; Flanagan JR
    Behav Brain Res; 2015 Feb; 279():234-9. PubMed ID: 25476567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Spatial Learning Controls Instinctive Defensive Behavior in Mice.
    Vale R; Evans DA; Branco T
    Curr Biol; 2017 May; 27(9):1342-1349. PubMed ID: 28416117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of striatal pseudo-reward prediction errors to value-based decision-making.
    Mas-Herrero E; Sescousse G; Cools R; Marco-Pallarés J
    Neuroimage; 2019 Jun; 193():67-74. PubMed ID: 30851446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between motor exploration and reinforcement learning.
    Uehara S; Mawase F; Therrien AS; Cherry-Allen KM; Celnik P
    J Neurophysiol; 2019 Aug; 122(2):797-808. PubMed ID: 31242063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of prediction and outcomes in adaptive cognitive control.
    Schiffer AM; Waszak F; Yeung N
    J Physiol Paris; 2015; 109(1-3):38-52. PubMed ID: 25698177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociable Neural Systems Support the Learning and Transfer of Hierarchical Control Structure.
    Eichenbaum A; Scimeca JM; D'Esposito M
    J Neurosci; 2020 Aug; 40(34):6624-6637. PubMed ID: 32690614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.