These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37119818)

  • 21. Rethinking the hippocampal cognitive map as a meta-learning computational module.
    Ambrogioni L; Ólafsdóttir HF
    Trends Cogn Sci; 2023 Aug; 27(8):702-712. PubMed ID: 37357064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural learning rules for generating flexible predictions and computing the successor representation.
    Fang C; Aronov D; Abbott LF; Mackevicius EL
    Elife; 2023 Mar; 12():. PubMed ID: 36928104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Action-driven contrastive representation for reinforcement learning.
    Kim M; Rho K; Kim YD; Jung K
    PLoS One; 2022; 17(3):e0265456. PubMed ID: 35303031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel task for the investigation of action acquisition.
    Stafford T; Thirkettle M; Walton T; Vautrelle N; Hetherington L; Port M; Gurney K; Redgrave P
    PLoS One; 2012; 7(6):e37749. PubMed ID: 22675490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adjacency Constraint for Efficient Hierarchical Reinforcement Learning.
    Zhang T; Guo S; Tan T; Hu X; Chen F
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):4152-4166. PubMed ID: 35853052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactive cognitive maps support flexible behavior under threat.
    Wise T; Charpentier CJ; Dayan P; Mobbs D
    Cell Rep; 2023 Aug; 42(8):113008. PubMed ID: 37610871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deficits in positive reinforcement learning and uncertainty-driven exploration are associated with distinct aspects of negative symptoms in schizophrenia.
    Strauss GP; Frank MJ; Waltz JA; Kasanova Z; Herbener ES; Gold JM
    Biol Psychiatry; 2011 Mar; 69(5):424-31. PubMed ID: 21168124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive Quadruped Balance Control for Dynamic Environments Using Maximum-Entropy Reinforcement Learning.
    Sun H; Fu T; Ling Y; He C
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning.
    Denizdurduran B; Markram H; Gewaltig MO
    Biol Cybern; 2022 Dec; 116(5-6):711-726. PubMed ID: 35951117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Successor Representation: Its Computational Logic and Neural Substrates.
    Gershman SJ
    J Neurosci; 2018 Aug; 38(33):7193-7200. PubMed ID: 30006364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subgoal- and Goal-related Reward Prediction Errors in Medial Prefrontal Cortex.
    Ribas-Fernandes JJF; Shahnazian D; Holroyd CB; Botvinick MM
    J Cogn Neurosci; 2019 Jan; 31(1):8-23. PubMed ID: 30240308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maximum correntropy based attention-gated reinforcement learning designed for brain machine interface.
    Hongbao Li ; Fang Wang ; Qiaosheng Zhang ; Shaomin Zhang ; Yiwen Wang ; Xiaoxiang Zheng ; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3056-3059. PubMed ID: 28268956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reinforcement-learning in fronto-striatal circuits.
    Averbeck B; O'Doherty JP
    Neuropsychopharmacology; 2022 Jan; 47(1):147-162. PubMed ID: 34354249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arithmetic value representation for hierarchical behavior composition.
    Makino H
    Nat Neurosci; 2023 Jan; 26(1):140-149. PubMed ID: 36550292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. London taxi drivers: A review of neurocognitive studies and an exploration of how they build their cognitive map of London.
    Griesbauer EM; Manley E; Wiener JM; Spiers HJ
    Hippocampus; 2022 Jan; 32(1):3-20. PubMed ID: 34914151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A reinforcement-based mechanism for discontinuous learning.
    Reddy G
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2215352119. PubMed ID: 36442113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hippocampal development and the dissociation of cognitive-spatial mapping from motor performance.
    Devan BD; Magalis C; McDonald RJ
    F1000Res; 2015; 4():625. PubMed ID: 26594345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation.
    Ruan X; Li P; Zhu X; Yu H; Yu N
    Comput Intell Neurosci; 2021; 2021():9945044. PubMed ID: 34956359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical curiosity loops and active sensing.
    Gordon G; Ahissar E
    Neural Netw; 2012 Aug; 32():119-29. PubMed ID: 22386787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.