These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3711983)

  • 1. Behavioral development in the absence of neural activity: effects of chronic immobilization on amphibian embryos.
    Haverkamp LJ; Oppenheim RW
    J Neurosci; 1986 May; 6(5):1332-7. PubMed ID: 3711983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The movement of the prospective eye vesicles from the neural plate into the neural fold in Ambystoma mexicanum and Xenopus laevis.
    Brun RB
    Dev Biol; 1981 Nov; 88(1):192-9. PubMed ID: 7286445
    [No Abstract]   [Full Text] [Related]  

  • 3. The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos.
    Epperlein HH; Halfter W; Tucker RP
    Development; 1988 Aug; 103(4):743-56. PubMed ID: 2470571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos.
    Gillespie JI
    J Physiol; 1983 Nov; 344():359-77. PubMed ID: 6655587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical and physiological development of the Xenopus embryonic motor system in the absence of neural activity.
    Haverkamp LJ
    J Neurosci; 1986 May; 6(5):1338-48. PubMed ID: 3711984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valproic acid induced abnormal development of the central nervous system of three species of amphibians: implications for neural tube defects and alternative experimental systems.
    Oberemm A; Kirschbaum F
    Teratog Carcinog Mutagen; 1992; 12(6):251-62. PubMed ID: 1363963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of vertical and planar signals during the early steps of neural induction.
    Grunz H; Schüren C; Richter K
    Int J Dev Biol; 1995 Jun; 39(3):539-43. PubMed ID: 7577445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autoneuralization in the amphibian ectoderm--a species-specific and stage-specific phenomenon.
    Mattsson MO; Nakatsuji N; Løvtrup S
    Exp Cell Biol; 1987; 55(3):145-51. PubMed ID: 3311847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid method for observing the internal morphology of amphibian embryos.
    Smith SC; Armstrong JB; Hoppe DC
    Scanning Microsc; 1988 Dec; 2(4):2087-90. PubMed ID: 3238382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.
    Kurth T; Berger J; Wilsch-Bräuninger M; Kretschmar S; Cerny R; Schwarz H; Löfberg J; Piendl T; Epperlein HH
    Methods Cell Biol; 2010; 96():395-423. PubMed ID: 20869532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders.
    Whiteley M; Mathers PH; Jamrich M
    Dev Genet; 1997; 20(2):145-51. PubMed ID: 9144925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of sulfated proteoglycans in amphibian embryonal cells.
    Løvtrup-Rein H
    Biosci Rep; 1989 Apr; 9(2):213-22. PubMed ID: 2504303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface contraction and expansion waves correlated with differentiation in axolotl embryos. II. In contrast to urodeles, the anuran Xenopus laevis does not show furrowing surface contraction waves.
    Nieuwkoop PD; Björklund NK; Gordon R
    Int J Dev Biol; 1996 Aug; 40(4):661-4. PubMed ID: 8877438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Nuclear behavior of embryonic cells and growing oocytes from the clawed toad in the cytoplasm of maturing axolotl oocytes].
    Nikitina LA
    Ontogenez; 1984; 15(5):535-8. PubMed ID: 6504501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphibian (urodele) myotomes display transitory anterior/posterior and medial/lateral differentiation patterns.
    Neff AW; Malacinski GM; Chung HM
    Dev Biol; 1989 Apr; 132(2):529-43. PubMed ID: 2647546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axolotl retina and lens development: mutual tissue stimulation and autonomous failure in the eyeless mutant retina.
    Cuny R; Malacinski GM
    J Embryol Exp Morphol; 1986 Jul; 96():151-70. PubMed ID: 3805980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic and cortical factors participating in cleavage furrow formation in eggs of three amphibian genera; Ambystoma, Xenopus and Cynops.
    Sawai T
    J Embryol Exp Morphol; 1983 Oct; 77():243-54. PubMed ID: 6655432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stopping response of Xenopus laevis embryos: behaviour, development and physiology.
    Boothby KM; Roberts A
    J Comp Physiol A; 1992 Feb; 170(2):171-80. PubMed ID: 1583603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos.
    Roberts A; Patton DT
    J Neurosci Res; 1985; 13(1-2):23-38. PubMed ID: 3871863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.