These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3711983)

  • 21. Role of bilateral zones of ingressing superficial cells during gastrulation of Ambystoma mexicanum.
    Lundmark C
    J Embryol Exp Morphol; 1986 Sep; 97():47-62. PubMed ID: 3794603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium in the developing Ambystoma neural axis shown by 3H and fluorescent chlortetracycline and atomic absorption spectrometry.
    Moran DJ
    Anat Rec; 1990 Dec; 228(4):449-55. PubMed ID: 2285161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative research on morphology and mechanical property of integument of Rana dybowskii, Xenopus laevis and Ambystoma mexicanum.
    Li M; Gao Z; Dai T; Chen D; Tong J; Guo L; Wang C
    J Mech Behav Biomed Mater; 2021 May; 117():104382. PubMed ID: 33607570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Examination of an amphibian-based assay using the larvae of Xenopus laevis and Ambystoma mexicanum.
    Saka M
    Ecotoxicol Environ Saf; 2003 May; 55(1):38-45. PubMed ID: 12706392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Origin of the cells in the symmetrical forelimbs of the axolotl Ambystoma mexicanum].
    Tank P
    Ontogenez; 1989; 20(2):179-91. PubMed ID: 2740070
    [No Abstract]   [Full Text] [Related]  

  • 26. Epicardial development in the axolotl, Ambystoma mexicanum.
    Fransen ME; Lemanski LF
    Anat Rec; 1990 Feb; 226(2):228-36. PubMed ID: 2301739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA of AmVegT, the axolotl orthologue of the Xenopus meso-endodermal determinant, is not localized in the oocyte.
    Nath K; Elinson RP
    Gene Expr Patterns; 2007 Jan; 7(1-2):197-201. PubMed ID: 16920404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fibronectin in early amphibian embryos. Migrating mesodermal cells contact fibronectin established prior to gastrulation.
    Boucaut JC; Darribere T
    Cell Tissue Res; 1983; 234(1):135-45. PubMed ID: 6640612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The origin of the mesoderm in an anuran, Xenopus laevis, and a urodele, Ambystoma mexicanum.
    Smith JC; Malacinski GM
    Dev Biol; 1983 Jul; 98(1):250-4. PubMed ID: 6862108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural tube (canal) morphogenesis in notochordless amphibian (Xenopus laevis) embryos.
    Malacinski GM; Youn BW
    Proc Soc Exp Biol Med; 1983 Dec; 174(3):316-21. PubMed ID: 6686677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erratic deposition of agrin during the formation of Xenopus neuromuscular junctions in culture.
    Anderson MJ; Shi ZQ; Grawel R; Zackson SL
    Dev Biol; 1995 Jul; 170(1):1-20. PubMed ID: 7601300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation.
    van Mier P; Armstrong J; Roberts A
    Neuroscience; 1989; 32(1):113-26. PubMed ID: 2586744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural fold and neural crest movement in the Mexican salamander Ambystoma mexicanum.
    Brun RB
    J Exp Zool; 1985 Apr; 234(1):57-61. PubMed ID: 3989498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning of a complementary DNA encoding an Ambystoma mexicanum metallothionein, AmMT, and expression of the gene during early development.
    Saint-Jacques E; Guay J; Wirtanen L; Huard V; Stewart G; Séguin C
    DNA Cell Biol; 1998 Jan; 17(1):83-91. PubMed ID: 9468225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progressive patterning precedes somite segmentation in the Mexican axolotl (Ambystoma mexicanum).
    Armstrong JB; Graveson AC
    Dev Biol; 1988 Mar; 126(1):1-6. PubMed ID: 3342928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organophosphorus pesticides effect on early stages of the axolotl Ambystoma mexicanum (Amphibia: Caudata).
    Robles-Mendoza C; García-Basilio C; Cram-Heydrich S; Hernández-Quiroz M; Vanegas-Pérez C
    Chemosphere; 2009 Feb; 74(5):703-10. PubMed ID: 19012946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of locomotor behavior in wild type and spastic (sp/sp) axolotls, Ambystoma mexicanum.
    Ide CF; Tompkins R
    J Exp Zool; 1975 Dec; 194(3):467-78. PubMed ID: 1202151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of hypoxia on embryonic development in two Ambystoma and two Rana species.
    Mills NE; Barnhart MC
    Physiol Biochem Zool; 1999; 72(2):179-88. PubMed ID: 10068621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Common mechanisms in vertebrate axonal navigation: retinal transplants between distantly related amphibia.
    Harris WA; Cole J
    J Neurogenet; 1984 Apr; 1(2):127-40. PubMed ID: 6536722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrorotation of axolotl embryos.
    Abou-Ali G; Kaler KV; Paul R; Björklund NK; Gordon R
    Bioelectromagnetics; 2002 Apr; 23(3):214-23. PubMed ID: 11891751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.