These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3711984)

  • 1. Anatomical and physiological development of the Xenopus embryonic motor system in the absence of neural activity.
    Haverkamp LJ
    J Neurosci; 1986 May; 6(5):1338-48. PubMed ID: 3711984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral development in the absence of neural activity: effects of chronic immobilization on amphibian embryos.
    Haverkamp LJ; Oppenheim RW
    J Neurosci; 1986 May; 6(5):1332-7. PubMed ID: 3711983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypergravity susceptibility of ventral root activity during fictive swimming in tadpoles (Xenopus laevis).
    Böser S; Horn ER
    Arch Ital Biol; 2006 May; 144(2):99-113. PubMed ID: 16642789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of swimming rhythmicity in post-embryonic Xenopus laevis.
    Sillar KT; Wedderburn JF; Simmers AJ
    Proc Biol Sci; 1991 Nov; 246(1316):147-53. PubMed ID: 1685239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of swimming rhythmicity by 5-hydroxytryptamine during post-embryonic development in Xenopus laevis.
    Sillar KT; Wedderburn JF; Simmers AJ
    Proc Biol Sci; 1992 Nov; 250(1328):107-14. PubMed ID: 1361984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The post-embryonic development of cell properties and synaptic drive underlying locomotor rhythm generation in Xenopus larvae.
    Sillar KT; Simmers AJ; Wedderburn JF
    Proc Biol Sci; 1992 Jul; 249(1324):65-70. PubMed ID: 1359549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP; Sillar KT
    Eur J Neurosci; 2007 Nov; 26(9):2556-64. PubMed ID: 17970719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R; Soffe SR
    J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for potassium currents in the generation of the swimming motor pattern of Xenopus embryos.
    Wall MJ; Dale N
    J Neurophysiol; 1994 Jul; 72(1):337-48. PubMed ID: 7965018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically evoked fictive swimming in the low-spinal immobilized turtle.
    Juranek J; Currie SN
    J Neurophysiol; 2000 Jan; 83(1):146-55. PubMed ID: 10634861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional properties of reticulospinal neurons in the early-swimming stage Xenopus embryo.
    van Mier P; ten Donkelaar HJ
    J Neurosci; 1989 Jan; 9(1):25-37. PubMed ID: 2913206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of commissural interneurons in spinal cord of Xenopus embryos.
    Soffe SR; Clarke JD; Roberts A
    J Neurophysiol; 1984 Jun; 51(6):1257-67. PubMed ID: 6737030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation.
    van Mier P; Armstrong J; Roberts A
    Neuroscience; 1989; 32(1):113-26. PubMed ID: 2586744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos.
    Roberts A; Dale N; Evoy WH; Soffe SR
    J Neurophysiol; 1985 Jul; 54(1):1-10. PubMed ID: 2993537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos.
    Sillar KT; Roberts A
    J Neurosci; 1992 May; 12(5):1647-57. PubMed ID: 1578259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo.
    O'Donovan MJ; Landmesser L
    J Neurosci; 1987 Oct; 7(10):3256-64. PubMed ID: 3668626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.
    Hänzi S; Straka H
    J Exp Biol; 2017 Jan; 220(Pt 2):227-236. PubMed ID: 27811303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adrenoreceptor-mediated modulation of the spinal locomotor pattern during swimming in Xenopus laevis tadpoles.
    Fischer H; Merrywest SD; Sillar KT
    Eur J Neurosci; 2001 Mar; 13(5):977-86. PubMed ID: 11264670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ligand-gated ion channels in the swimming behaviour of Xenopus tadpoles: experimental data and modelling experiments.
    Prime L; Pichon Y
    Eur Biophys J; 2004 May; 33(3):265-73. PubMed ID: 14727098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.