These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 37119850)
21. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation. Hoben JP; Lubner CE; Ratzloff MW; Schut GJ; Nguyen DMN; Hempel KW; Adams MWW; King PW; Miller AF J Biol Chem; 2017 Aug; 292(34):14039-14049. PubMed ID: 28615449 [TBL] [Abstract][Full Text] [Related]
22. Structural and redox relationships between Paracoccus denitrificans, porcine and human electron-transferring flavoproteins. Watmough NJ; Kiss J; Frerman FE Eur J Biochem; 1992 May; 205(3):1089-97. PubMed ID: 1576992 [TBL] [Abstract][Full Text] [Related]
23. Unusual redox properties of electron-transfer flavoprotein from Methylophilus methylotrophus. Byron CM; Stankovich MT; Husain M; Davidson VL Biochemistry; 1989 Oct; 28(21):8582-7. PubMed ID: 2605209 [TBL] [Abstract][Full Text] [Related]
24. Ultrafast photooxidation of protein-bound anionic flavin radicals. Zhuang B; Ramodiharilafy R; Liebl U; Aleksandrov A; Vos MH Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35181610 [TBL] [Abstract][Full Text] [Related]
25. Reduction midpoint potentials of bifurcating electron transfer flavoproteins. Miller AF; Duan HD; Varner TA; Mohamed Raseek N Methods Enzymol; 2019; 620():365-398. PubMed ID: 31072494 [TBL] [Abstract][Full Text] [Related]
26. alpha Arg-237 in Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein affords approximately 200-millivolt stabilization of the FAD anionic semiquinone and a kinetic block on full reduction to the dihydroquinone. Talfournier F; Munro AW; Basran J; Sutcliffe MJ; Daff S; Chapman SK; Scrutton NS J Biol Chem; 2001 Jun; 276(23):20190-6. PubMed ID: 11285259 [TBL] [Abstract][Full Text] [Related]
27. Expression and characterization of human and chimeric human-Paracoccus denitrificans electron transfer flavoproteins. Herrick KR; Salazar D; Goodman SI; Finocchiaro G; Bedzyk LA; Frerman FE J Biol Chem; 1994 Dec; 269(51):32239-45. PubMed ID: 7798224 [TBL] [Abstract][Full Text] [Related]
28. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase. Meints CE; Gustafsson FS; Scrutton NS; Wolthers KR Biochemistry; 2011 Dec; 50(51):11131-42. PubMed ID: 22097960 [TBL] [Abstract][Full Text] [Related]
29. The iron-sulfur cluster of electron transfer flavoprotein-ubiquinone oxidoreductase is the electron acceptor for electron transfer flavoprotein. Swanson MA; Usselman RJ; Frerman FE; Eaton GR; Eaton SS Biochemistry; 2008 Aug; 47(34):8894-901. PubMed ID: 18672901 [TBL] [Abstract][Full Text] [Related]
30. The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD. Schut GJ; Mohamed-Raseek N; Tokmina-Lukaszewska M; Mulder DW; Nguyen DMN; Lipscomb GL; Hoben JP; Patterson A; Lubner CE; King PW; Peters JW; Bothner B; Miller AF; Adams MWW J Biol Chem; 2019 Mar; 294(9):3271-3283. PubMed ID: 30567738 [TBL] [Abstract][Full Text] [Related]
31. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors. Zeghouf M; Fontecave M; Macherel D; Covès J Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350 [TBL] [Abstract][Full Text] [Related]
32. Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Henriques BJ; Katrine Jentoft Olsen R; Gomes CM; Bross P Gene; 2021 Apr; 776():145407. PubMed ID: 33450351 [TBL] [Abstract][Full Text] [Related]
33. Modulation of the redox properties of the flavin cofactor through hydrogen-bonding interactions with the N(5) atom: role of alphaSer254 in the electron-transfer flavoprotein from the methylotrophic bacterium W3A1. Yang KY; Swenson RP Biochemistry; 2007 Mar; 46(9):2289-97. PubMed ID: 17291008 [TBL] [Abstract][Full Text] [Related]
37. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors. Murataliev MB; Feyereisen R Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150 [TBL] [Abstract][Full Text] [Related]
38. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I; Shaffer C; Ballou DP; Peterson JA Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531 [TBL] [Abstract][Full Text] [Related]
39. Dynamic determination of the functional state in photolyase and the implication for cryptochrome. Liu Z; Zhang M; Guo X; Tan C; Li J; Wang L; Sancar A; Zhong D Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12972-7. PubMed ID: 23882072 [TBL] [Abstract][Full Text] [Related]
40. Conformational analysis of the riboflavin-responsive ETF:QO-p.Pro456Leu variant associated with mild multiple acyl-CoA dehydrogenase deficiency. Lucas TG; Henriques BJ; Gomes CM Biochim Biophys Acta Proteins Proteom; 2020 Jun; 1868(6):140393. PubMed ID: 32087359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]