These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 37119925)
1. Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Kumar JA; Sathish S; Prabu D; Renita AA; Saravanan A; Deivayanai VC; Anish M; Jayaprabakar J; Baigenzhenov O; Hosseini-Bandegharaei A Chemosphere; 2023 Aug; 331():138680. PubMed ID: 37119925 [TBL] [Abstract][Full Text] [Related]
2. Appraising the availability of biomass residues in India and their bioenergy potential. Deep Singh A; Gajera B; Sarma AK Waste Manag; 2022 Oct; 152():38-47. PubMed ID: 35973326 [TBL] [Abstract][Full Text] [Related]
3. Bioengineering of biowaste to recover bioproducts and bioenergy: A circular economy approach towards sustainable zero-waste environment. Kumar V; Vangnai AS; Sharma N; Kaur K; Chakraborty P; Umesh M; Singhal B; Utreja D; Carrasco EU; Andler R; Awasthi MK; Taherzadeh MJ Chemosphere; 2023 Apr; 319():138005. PubMed ID: 36731660 [TBL] [Abstract][Full Text] [Related]
4. Expression of Concern: Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere; 2024 May; 356():142009. PubMed ID: 38685649 [No Abstract] [Full Text] [Related]
5. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Kumar Sarangi P; Subudhi S; Bhatia L; Saha K; Mudgil D; Prasad Shadangi K; Srivastava RK; Pattnaik B; Arya RK Environ Sci Pollut Res Int; 2023 Jan; 30(4):8526-8539. PubMed ID: 35554831 [TBL] [Abstract][Full Text] [Related]
6. The global energy matrix and use of agricultural residues for bioenergy production: A review with inspiring insights that aim to contribute to deliver solutions for society and industrial sectors through suggestions for future research. Ribeiro GF; Junior AB Waste Manag Res; 2023 Aug; 41(8):1283-1304. PubMed ID: 36856060 [TBL] [Abstract][Full Text] [Related]
7. Sustainable and circular agro-environmental practices: A review of the management of agricultural waste biomass in Spain and the Czech Republic. Duque-Acevedo M; Ulloa-Murillo LM; Belmonte-Ureña LJ; Camacho-Ferre F; Mercl F; Tlustoš P Waste Manag Res; 2023 May; 41(5):955-969. PubMed ID: 36519229 [TBL] [Abstract][Full Text] [Related]
8. Biomass utilization and production of biofuels from carbon neutral materials. Srivastava RK; Shetti NP; Reddy KR; Kwon EE; Nadagouda MN; Aminabhavi TM Environ Pollut; 2021 May; 276():116731. PubMed ID: 33607352 [TBL] [Abstract][Full Text] [Related]
9. Global bioenergy potential from high-lignin agricultural residue. Mendu V; Shearin T; Campbell JE; Stork J; Jae J; Crocker M; Huber G; DeBolt S Proc Natl Acad Sci U S A; 2012 Mar; 109(10):4014-9. PubMed ID: 22355123 [TBL] [Abstract][Full Text] [Related]
10. The comprehensive characterization of Prosopis juliflora pods as a potential bioenergy feedstock. Gayathri G; Uppuluri KB Sci Rep; 2022 Nov; 12(1):18586. PubMed ID: 36329067 [TBL] [Abstract][Full Text] [Related]
11. Agricultural waste management strategies for environmental sustainability. Koul B; Yakoob M; Shah MP Environ Res; 2022 Apr; 206():112285. PubMed ID: 34710442 [TBL] [Abstract][Full Text] [Related]
12. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. Hoang AT; Nizetic S; Ong HC; Chong CT; Atabani AE; Pham VV J Environ Manage; 2021 Oct; 296():113194. PubMed ID: 34243094 [TBL] [Abstract][Full Text] [Related]
13. Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion. Zhang Y; Ding Z; Shahadat Hossain M; Maurya R; Yang Y; Singh V; Kumar D; Salama ES; Sun X; Sindhu R; Binod P; Zhang Z; Kumar Awasthi M Bioresour Technol; 2023 Jan; 367():128281. PubMed ID: 36370945 [TBL] [Abstract][Full Text] [Related]
14. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. Sarangi PK; Anand Singh T; Joykumar Singh N; Prasad Shadangi K; Srivastava RK; Singh AK; Chandel AK; Pareek N; Vivekanand V Bioresour Technol; 2022 May; 351():127085. PubMed ID: 35358673 [TBL] [Abstract][Full Text] [Related]
15. Insights into the recent advances of agro-industrial waste valorization for sustainable biogas production. Sharma V; Sharma D; Tsai ML; Ortizo RGG; Yadav A; Nargotra P; Chen CW; Sun PP; Dong CD Bioresour Technol; 2023 Dec; 390():129829. PubMed ID: 37839650 [TBL] [Abstract][Full Text] [Related]
16. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Kapoor R; Ghosh P; Kumar M; Sengupta S; Gupta A; Kumar SS; Vijay V; Kumar V; Kumar Vijay V; Pant D Bioresour Technol; 2020 May; 304():123036. PubMed ID: 32107150 [TBL] [Abstract][Full Text] [Related]
17. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria. Elum ZA; Modise DM; Nhamo G Environ Sci Pollut Res Int; 2017 Feb; 24(4):3260-3273. PubMed ID: 27933500 [TBL] [Abstract][Full Text] [Related]
18. Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives. Tawfik A; Ismail S; Elsayed M; Qyyum MA; Rehan M Chemosphere; 2022 Jun; 296():133812. PubMed ID: 35149012 [TBL] [Abstract][Full Text] [Related]
19. The potential impacts of biomass feedstock production on water resource availability. Stone KC; Hunt PG; Cantrell KB; Ro KS Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667 [TBL] [Abstract][Full Text] [Related]
20. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Yaashikaa PR; Senthil Kumar P; Varjani S Bioresour Technol; 2022 Jan; 343():126126. PubMed ID: 34673193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]