These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 37119925)
21. Biochemical production of bioenergy from agricultural crops and residue in Iran. Karimi Alavijeh M; Yaghmaei S Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716 [TBL] [Abstract][Full Text] [Related]
22. Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Subbarao PMV; D' Silva TC; Adlak K; Kumar S; Chandra R; Vijay VK Environ Res; 2023 Oct; 234():116286. PubMed ID: 37263473 [TBL] [Abstract][Full Text] [Related]
23. Recovery of agricultural waste biomass: A path for circular bioeconomy. Sadh PK; Chawla P; Kumar S; Das A; Kumar R; Bains A; Sridhar K; Duhan JS; Sharma M Sci Total Environ; 2023 Apr; 870():161904. PubMed ID: 36736404 [TBL] [Abstract][Full Text] [Related]
24. Land-use and alternative bioenergy pathways for waste biomass. Campbell JE; Block E Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033 [TBL] [Abstract][Full Text] [Related]
25. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Chen WH; Nižetić S; Sirohi R; Huang Z; Luque R; M Papadopoulos A; Sakthivel R; Phuong Nguyen X; Tuan Hoang A Bioresour Technol; 2022 Jan; 344(Pt A):126207. PubMed ID: 34715344 [TBL] [Abstract][Full Text] [Related]
26. A mini review on renewable sources for biofuel. Ho DP; Ngo HH; Guo W Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598 [TBL] [Abstract][Full Text] [Related]
27. A paradigm shift towards production of sustainable bioenergy and advanced products from Brar KK; Raheja Y; Chadha BS; Magdouli S; Brar SK; Yang YH; Bhatia SK; Koubaa A Biomass Convers Biorefin; 2022 Mar; ():1-22. PubMed ID: 35342682 [TBL] [Abstract][Full Text] [Related]
28. Biomass conversion of agricultural waste residues for different applications: a comprehensive review. Gupta N; Mahur BK; Izrayeel AMD; Ahuja A; Rastogi VK Environ Sci Pollut Res Int; 2022 Oct; 29(49):73622-73647. PubMed ID: 36071366 [TBL] [Abstract][Full Text] [Related]
30. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands. Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474 [TBL] [Abstract][Full Text] [Related]
31. Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Kaur M; Kumar M; Sachdeva S; Puri SK Bioresour Technol; 2018 Mar; 251():390-402. PubMed ID: 29254877 [TBL] [Abstract][Full Text] [Related]
32. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Ubando AT; Rivera DRT; Chen WH; Culaba AB Bioresour Technol; 2019 Nov; 291():121837. PubMed ID: 31353166 [TBL] [Abstract][Full Text] [Related]
33. Fungal biorefinery for sustainable resource recovery from waste. Chatterjee S; Venkata Mohan S Bioresour Technol; 2022 Feb; 345():126443. PubMed ID: 34852279 [TBL] [Abstract][Full Text] [Related]
34. Biofuel production for circular bioeconomy: Present scenario and future scope. Ye Y; Guo W; Ngo HH; Wei W; Cheng D; Bui XT; Hoang NB; Zhang H Sci Total Environ; 2024 Jul; 935():172863. PubMed ID: 38788387 [TBL] [Abstract][Full Text] [Related]
35. Enhancement of sustainable bioenergy production by valorising tomato residues: A GIS-based model. Valenti F; Parlato MCM; Pecorino B; Selvaggi R Sci Total Environ; 2023 Apr; 869():161766. PubMed ID: 36702285 [TBL] [Abstract][Full Text] [Related]
36. Nanomaterial conjugated lignocellulosic waste: cost-effective production of sustainable bioenergy using enzymes. Kaur P; Thakur M; Tondan D; Bamrah GK; Misra S; Kumar P; Pandohee J; Kulshrestha S 3 Biotech; 2021 Nov; 11(11):480. PubMed ID: 34790504 [TBL] [Abstract][Full Text] [Related]
37. Exergy analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner. Khounani Z; Hosseinzadeh-Bandbafha H; Nazemi F; Shaeifi M; Karimi K; Tabatabaei M; Aghbashlo M; Lam SS J Environ Manage; 2021 Feb; 279():111822. PubMed ID: 33348185 [TBL] [Abstract][Full Text] [Related]
38. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Sonu ; Rani GM; Pathania D; Abhimanyu ; Umapathi R; Rustagi S; Huh YS; Gupta VK; Kaushik A; Chaudhary V Sci Total Environ; 2023 Jun; 875():162667. PubMed ID: 36894105 [TBL] [Abstract][Full Text] [Related]
39. Bioenergy production in Pakistan: Potential, progress, and prospect. Khan S; Nisar A; Wu B; Zhu QL; Wang YW; Hu GQ; He MX Sci Total Environ; 2022 Mar; 814():152872. PubMed ID: 34990677 [TBL] [Abstract][Full Text] [Related]
40. Renewable Energy Potential: Second-Generation Biomass as Feedstock for Bioethanol Production. Igwebuike CM; Awad S; Andrès Y Molecules; 2024 Apr; 29(7):. PubMed ID: 38611898 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]