These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 37119925)
41. The significance of biomass in a circular economy. Sherwood J Bioresour Technol; 2020 Mar; 300():122755. PubMed ID: 31956060 [TBL] [Abstract][Full Text] [Related]
42. Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling. Meena M; Shubham S; Paritosh K; Pareek N; Vivekanand V Bioresour Technol; 2021 Nov; 340():125642. PubMed ID: 34315128 [TBL] [Abstract][Full Text] [Related]
43. The current status and challenges of biomass biorefineries in Africa: A critical review and future perspectives for bioeconomy development. Fertahi S; Elalami D; Tayibi S; Taarji N; Lyamlouli K; Bargaz A; Oukarroum A; Zeroual Y; El Bouhssini M; Barakat A Sci Total Environ; 2023 Apr; 870():162001. PubMed ID: 36739012 [TBL] [Abstract][Full Text] [Related]
44. Valorization of Food and Agricultural Waste: A Step towards Greener Future. Rao P; Rathod V Chem Rec; 2019 Sep; 19(9):1858-1871. PubMed ID: 30511811 [TBL] [Abstract][Full Text] [Related]
45. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. Deivayanai VC; Yaashikaa PR; Senthil Kumar P; Rangasamy G Bioresour Technol; 2022 Dec; 365():128166. PubMed ID: 36283663 [TBL] [Abstract][Full Text] [Related]
46. Interactions among bioenergy feedstock choices, landscape dynamics, and land use. Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412 [TBL] [Abstract][Full Text] [Related]
47. Efficiency analysis of bioenergy potential on winter fallow fields: A case study of rape. Liu L; Xu X; Hu Y; Liu Z; Qiao Z Sci Total Environ; 2018 Jul; 628-629():103-109. PubMed ID: 29428852 [TBL] [Abstract][Full Text] [Related]
48. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Babu S; Singh Rathore S; Singh R; Kumar S; Singh VK; Yadav SK; Yadav V; Raj R; Yadav D; Shekhawat K; Ali Wani O Bioresour Technol; 2022 Sep; 360():127566. PubMed ID: 35788385 [TBL] [Abstract][Full Text] [Related]
49. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Adler PR; Del Grosso SJ; Parton WJ Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388 [TBL] [Abstract][Full Text] [Related]
50. Biomass Resources: Agriculture. Kluts IN; Brinkman MLJ; de Jong SA; Junginger HM Adv Biochem Eng Biotechnol; 2019; 166():13-26. PubMed ID: 28432390 [TBL] [Abstract][Full Text] [Related]
51. Plants to power: bioenergy to fuel the future. Yuan JS; Tiller KH; Al-Ahmad H; Stewart NR; Stewart CN Trends Plant Sci; 2008 Aug; 13(8):421-9. PubMed ID: 18632303 [TBL] [Abstract][Full Text] [Related]
52. A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. Raina D; Kumar V; Saran S Chemosphere; 2022 May; 294():133712. PubMed ID: 35081402 [TBL] [Abstract][Full Text] [Related]
53. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives. Zhao L; Sun ZF; Zhang CC; Nan J; Ren NQ; Lee DJ; Chen C Bioresour Technol; 2022 Jan; 343():126123. PubMed ID: 34653621 [TBL] [Abstract][Full Text] [Related]
54. An integrated biorefinery approach for the valorization of water hyacinth towards circular bioeconomy: a review. Bajpai S; Nemade PR Environ Sci Pollut Res Int; 2023 Mar; 30(14):39494-39536. PubMed ID: 36787076 [TBL] [Abstract][Full Text] [Related]
55. A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment. Kaniapan S; Pasupuleti J; Patma Nesan K; Abubackar HN; Umar HA; Oladosu TL; Bello SR; Rene ER Int J Environ Res Public Health; 2022 Mar; 19(6):. PubMed ID: 35329114 [TBL] [Abstract][Full Text] [Related]
56. Biofuels, land, and water: a systems approach to sustainability. Gopalakrishnan G; Negri MC; Wang M; Wu M; Snyder SW; Lafreniere L Environ Sci Technol; 2009 Aug; 43(15):6094-100. PubMed ID: 19731724 [TBL] [Abstract][Full Text] [Related]
57. Using Populus as a lignocellulosic feedstock for bioethanol. Porth I; El-Kassaby YA Biotechnol J; 2015 Apr; 10(4):510-24. PubMed ID: 25676392 [TBL] [Abstract][Full Text] [Related]
58. Suitability of Crop Residues as Feedstock for Biofuel Production in South Africa: A Sustainable Win-Win Scenario. Barahira DS; Okudoh VI; Eloka-Eboka AC J Oleo Sci; 2021 Feb; 70(2):213-226. PubMed ID: 33456011 [TBL] [Abstract][Full Text] [Related]
59. Enhancing biomass conversion to bioenergy with machine learning: Gains and problems. Wang R; He Z; Chen H; Guo S; Zhang S; Wang K; Wang M; Ho SH Sci Total Environ; 2024 Jun; 927():172310. PubMed ID: 38599406 [TBL] [Abstract][Full Text] [Related]
60. Innovative production of value-added products using agro-industrial wastes via solid-state fermentation. Bibi F; Ilyas N; Saeed M; Shabir S; Shati AA; Alfaifi MY; Amesho KTT; Chowdhury S; Sayyed RZ Environ Sci Pollut Res Int; 2023 Dec; 30(60):125197-125213. PubMed ID: 37482589 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]