These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37119960)
1. Substrate use and temperature effects in flight muscle mitochondria from an endothermic insect, the hawkmoth Manduca sexta. Wilmsen SM; Dzialowski E Comp Biochem Physiol A Mol Integr Physiol; 2023 Jul; 281():111439. PubMed ID: 37119960 [TBL] [Abstract][Full Text] [Related]
2. Chronic changes in developmental oxygen have little effect on mitochondria and tracheal density in the endothermic moth Manduca sexta. Wilmsen SM; Dzialowski EM J Exp Biol; 2024 Jul; 227(13):. PubMed ID: 38873706 [TBL] [Abstract][Full Text] [Related]
3. Altering developmental oxygen exposure influences thermoregulation and flight performance of Manduca sexta. Wilmsen SM; Dzialowski EM J Exp Biol; 2024 Jul; 227(13):. PubMed ID: 38873724 [TBL] [Abstract][Full Text] [Related]
4. Submaximal power output from the dorsolongitudinal flight muscles of the hawkmoth Manduca sexta. Tu MS; Daniel TL J Exp Biol; 2004 Dec; 207(Pt 26):4651-62. PubMed ID: 15579560 [TBL] [Abstract][Full Text] [Related]
6. Hawkmoths regulate flight torques with their abdomen for yaw control. Le V; Cellini B; Schilder R; Mongeau JM J Exp Biol; 2023 May; 226(9):. PubMed ID: 36995279 [TBL] [Abstract][Full Text] [Related]
7. Flight motor modulation with speed in the hawkmoth Manduca sexta. Hedrick TL; Martínez-Blat J; Goodman MJ J Insect Physiol; 2017 Jan; 96():115-121. PubMed ID: 27983942 [TBL] [Abstract][Full Text] [Related]
8. Temperature gradients in the flight muscles of Manduca sexta imply a spatial gradient in muscle force and energy output. George NT; Daniel TL J Exp Biol; 2011 Mar; 214(Pt 6):894-900. PubMed ID: 21346115 [TBL] [Abstract][Full Text] [Related]
9. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta. George NT; Sponberg S; Daniel TL J Exp Biol; 2012 Feb; 215(Pt 3):471-9. PubMed ID: 22246256 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production. Soares JB; Gaviraghi A; Oliveira MF PLoS One; 2015; 10(3):e0120600. PubMed ID: 25803027 [TBL] [Abstract][Full Text] [Related]
11. Effects of stretch receptor ablation on the optomotor control of lift in the hawkmoth Manduca sexta. Frye MA J Exp Biol; 2001 Nov; 204(Pt 21):3683-91. PubMed ID: 11719532 [TBL] [Abstract][Full Text] [Related]
12. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth Fernández MJ; Driver ME; Hedrick TL J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226 [TBL] [Abstract][Full Text] [Related]
13. Biochemical adaptations for flight in the insect. Sacktor B Biochem Soc Symp; 1976; (41):111-31. PubMed ID: 788715 [TBL] [Abstract][Full Text] [Related]
14. Indirect actuation reduces flight power requirements in Gau J; Gravish N; Sponberg S J R Soc Interface; 2019 Dec; 16(161):20190543. PubMed ID: 31847756 [TBL] [Abstract][Full Text] [Related]
15. Thermoregulation in endothermic insects. Heinrich B Science; 1974 Aug; 185(4153):747-56. PubMed ID: 4602075 [TBL] [Abstract][Full Text] [Related]
16. Flexible Thermal Sensitivity of Mitochondrial Oxygen Consumption and Substrate Oxidation in Flying Insect Species. Menail HA; Cormier SB; Ben Youssef M; Jørgensen LB; Vickruck JL; Morin P; Boudreau LH; Pichaud N Front Physiol; 2022; 13():897174. PubMed ID: 35547573 [TBL] [Abstract][Full Text] [Related]
17. Flight-motor-driven respiratory air flow in the hawkmoth Manduca sexta. Wasserthal LT J Exp Biol; 2001 Jul; 204(Pt 13):2209-20. PubMed ID: 11507105 [TBL] [Abstract][Full Text] [Related]
18. The hawkmoth wingbeat is not at resonance. Gau J; Wold ES; Lynch J; Gravish N; Sponberg S Biol Lett; 2022 May; 18(5):20220063. PubMed ID: 35611583 [TBL] [Abstract][Full Text] [Related]
19. The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. Willmott AP; Ellington CP J Exp Biol; 1997 Nov; 200(Pt 21):2723-45. PubMed ID: 9418030 [TBL] [Abstract][Full Text] [Related]
20. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. Combes SA; Daniel TL J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]