These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37120024)
1. Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media. Brusseau ML Sci Total Environ; 2023 Aug; 884():163730. PubMed ID: 37120024 [TBL] [Abstract][Full Text] [Related]
2. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone. Silva JAK; Šimůnek J; McCray JE J Contam Hydrol; 2022 May; 247():103984. PubMed ID: 35279485 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive retention model for PFAS transport in subsurface systems. Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197 [TBL] [Abstract][Full Text] [Related]
4. Air-water interfacial areas relevant for transport of per and poly-fluoroalkyl substances. Brusseau ML; Guo B Water Res; 2021 Dec; 207():117785. PubMed ID: 34731664 [TBL] [Abstract][Full Text] [Related]
5. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media. Huang D; Saleem H; Guo B; Brusseau ML Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Lyu Y; Brusseau ML; Chen W; Yan N; Fu X; Lin X Environ Sci Technol; 2018 Jul; 52(14):7745-7753. PubMed ID: 29944343 [TBL] [Abstract][Full Text] [Related]
7. Air-water interfacial adsorption of C4-C10 perfluorocarboxylic acids during transport in unsaturated porous media. Lyu Y; Wang B; Du X; Guo B; Brusseau ML Sci Total Environ; 2022 Jul; 831():154905. PubMed ID: 35364184 [TBL] [Abstract][Full Text] [Related]
8. Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media. Lyu X; Liu X; Sun Y; Gao B; Ji R; Wu J; Xue Y Environ Pollut; 2020 Nov; 266(Pt 1):115343. PubMed ID: 32814265 [TBL] [Abstract][Full Text] [Related]
9. PFAS transport under lower water-saturation conditions characterized with instrumented-column systems. Bigler M; He X; Brusseau ML Water Res; 2024 Aug; 260():121922. PubMed ID: 38878314 [TBL] [Abstract][Full Text] [Related]
10. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media. Van Glubt S; Brusseau ML Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425 [TBL] [Abstract][Full Text] [Related]
11. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media. Abraham JEF; Mumford KG; Patch DJ; Weber KP Environ Sci Technol; 2022 Nov; 56(22):15489-15498. PubMed ID: 36279175 [TBL] [Abstract][Full Text] [Related]
12. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media. Ji Y; Yan N; Brusseau ML; Guo B; Zheng X; Dai M; Liu H; Li X Environ Sci Technol; 2021 Aug; 55(15):10480-10490. PubMed ID: 34288652 [TBL] [Abstract][Full Text] [Related]
13. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media. Brusseau ML; Guo B; Huang D; Yan N; Lyu Y Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774 [TBL] [Abstract][Full Text] [Related]
14. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions. Brusseau ML; Van Glubt S Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851 [TBL] [Abstract][Full Text] [Related]
15. QSPR-based prediction of air-water interfacial adsorption coefficients for nonionic PFAS with large headgroups. Brusseau ML Chemosphere; 2023 Nov; 340():139960. PubMed ID: 37633613 [TBL] [Abstract][Full Text] [Related]
16. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients. Brusseau ML Water Res; 2019 Apr; 152():148-158. PubMed ID: 30665161 [TBL] [Abstract][Full Text] [Related]
17. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients. Brusseau ML Water Res; 2021 Feb; 190():116778. PubMed ID: 33387950 [TBL] [Abstract][Full Text] [Related]
18. Simulating PFAS transport influenced by rate-limited multi-process retention. Brusseau ML Water Res; 2020 Jan; 168():115179. PubMed ID: 31639593 [TBL] [Abstract][Full Text] [Related]
19. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method. Araujo JB; Mainhagu J; Brusseau ML Chemosphere; 2015 Sep; 134():199-202. PubMed ID: 25950136 [TBL] [Abstract][Full Text] [Related]
20. Testing the Validity of the Miscible-Displacement Interfacial Tracer Method for Measuring Air-Water Interfacial Area: Independent Benchmarking and Mathematical Modeling. El Ouni A; Guo B; Zhong H; Brusseau ML Chemosphere; 2021 Jan; 263():128193. PubMed ID: 33184521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]