These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37120816)
21. Interannual and seasonal variations of permafrost thaw depth on the Qinghai-Tibetan Plateau: A comparative study using long short-term memory, convolutional neural networks, and random forest. Liu Q; Niu J; Lu P; Dong F; Zhou F; Meng X; Xu W; Li S; Hu BX Sci Total Environ; 2022 Sep; 838(Pt 1):155886. PubMed ID: 35569652 [TBL] [Abstract][Full Text] [Related]
22. Divergent Trajectory of Soil Autotrophic and Heterotrophic Respiration upon Permafrost Thaw. Wang G; Chen L; Zhang D; Qin S; Peng Y; Yang G; Wang J; Yu J; Wei B; Liu Y; Li Q; Kang L; Wang Y; Yang Y Environ Sci Technol; 2022 Jul; 56(14):10483-10493. PubMed ID: 35748652 [TBL] [Abstract][Full Text] [Related]
23. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Hicks Pries CE; van Logtestijn RS; Schuur EA; Natali SM; Cornelissen JH; Aerts R; Dorrepaal E Glob Chang Biol; 2015 Dec; 21(12):4508-19. PubMed ID: 26150277 [TBL] [Abstract][Full Text] [Related]
24. Active layer and permafrost thermal regime in a patterned ground soil in Maritime Antarctica, and relationship with climate variability models. Chaves DA; Lyra GB; Francelino MR; Silva L; Thomazini A; Schaefer C Sci Total Environ; 2017 Apr; 584-585():572-585. PubMed ID: 28117155 [TBL] [Abstract][Full Text] [Related]
25. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C. Hicks Pries CE; Schuur EA; Crummer KG Glob Chang Biol; 2013 Feb; 19(2):649-61. PubMed ID: 23504799 [TBL] [Abstract][Full Text] [Related]
26. The role of changing temperature in microbial metabolic processes during permafrost thaw. Messan KS; Jones RM; Doherty SJ; Foley K; Douglas TA; Barbato RA PLoS One; 2020; 15(4):e0232169. PubMed ID: 32353013 [TBL] [Abstract][Full Text] [Related]
27. Permafrost and changing climate: the Russian perspective. Anisimov O; Reneva S Ambio; 2006 Jun; 35(4):169-75. PubMed ID: 16944641 [TBL] [Abstract][Full Text] [Related]
28. Spatial variations and controlling factors of ground ice isotopes in permafrost areas of the central Qinghai-Tibet Plateau. Wang W; Wu T; Chen Y; Li R; Xie C; Qiao Y; Zhu X; Hao J; Ni J Sci Total Environ; 2019 Oct; 688():542-554. PubMed ID: 31254820 [TBL] [Abstract][Full Text] [Related]
29. What determines the current presence or absence of permafrost in the Torneträsk region, a sub-arctic landscape in northern Sweden? Johansson M; Christensen TR; Akerman HJ; Callaghan TV Ambio; 2006 Jun; 35(4):190-7. PubMed ID: 16944644 [TBL] [Abstract][Full Text] [Related]
30. Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing'an Mountains, China. Shan W; Xu Z; Guo Y; Zhang C; Hu Z; Wang Y Sci Rep; 2020 Dec; 10(1):21297. PubMed ID: 33277578 [TBL] [Abstract][Full Text] [Related]
31. Storage, patterns, and environmental controls of soil organic carbon stocks in the permafrost regions of the Northern Hemisphere. Wu T; Wang D; Mu C; Zhang W; Zhu X; Zhao L; Li R; Hu G; Zou D; Chen J; Wei X; Wen A; Shang C; La Y; Lou P; Ma X; Wu X Sci Total Environ; 2022 Jul; 828():154464. PubMed ID: 35278536 [TBL] [Abstract][Full Text] [Related]
32. Permafrost thaw and climate warming may decrease the CO Raudina TV; Loiko SV; Lim A; Manasypov RM; Shirokova LS; Istigechev GI; Kuzmina DM; Kulizhsky SP; Vorobyev SN; Pokrovsky OS Sci Total Environ; 2018 Sep; 634():1004-1023. PubMed ID: 29660859 [TBL] [Abstract][Full Text] [Related]
33. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland. Hough M; McCabe S; Vining SR; Pickering Pedersen E; Wilson RM; Lawrence R; Chang KY; Bohrer G; ; Riley WJ; Crill PM; Varner RK; Blazewicz SJ; Dorrepaal E; Tfaily MM; Saleska SR; Rich VI Glob Chang Biol; 2022 Feb; 28(3):950-968. PubMed ID: 34727401 [TBL] [Abstract][Full Text] [Related]
34. Climate warming has direct and indirect effects on microbes associated with carbon cycling in northern lakes. Winder JC; Braga LPP; Kuhn MA; Thompson LM; Olefeldt D; Tanentzap AJ Glob Chang Biol; 2023 Jun; 29(11):3039-3053. PubMed ID: 36843502 [TBL] [Abstract][Full Text] [Related]
36. Degraded frozen soil and reduced frost heave in China due to climate warming. Zhang Z; Li M; Wen Z; Yin Z; Tang Y; Gao S; Wu Q Sci Total Environ; 2023 Oct; 893():164914. PubMed ID: 37327898 [TBL] [Abstract][Full Text] [Related]
37. Thermal monitoring of a Cryosol in a high marine terrace (Half Moon Island, Maritime Antarctica). Schaefer CEGR; Francelino MR; Pereira AB; Michel RFM; Schmitz D; Sacramento IF; Rodrigues WF; Miranda CO An Acad Bras Cienc; 2023; 95(suppl 3):e20210692. PubMed ID: 37585979 [TBL] [Abstract][Full Text] [Related]
38. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Ribeiro-Kumara C; Köster E; Aaltonen H; Köster K Environ Res; 2020 May; 184():109328. PubMed ID: 32163772 [TBL] [Abstract][Full Text] [Related]