These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37121018)

  • 21. The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration.
    Uarrota VG; Moresco R; Schmidt EC; Bouzon ZL; Nunes Eda C; Neubert Ede O; Peruch LA; Rocha M; Maraschin M
    Food Chem; 2016 Apr; 197(Pt A):737-46. PubMed ID: 26617011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen peroxide and flavan-3-ols in storage roots of cassava (Manihot esculenta crantz) during postharvest deterioration.
    Buschmann H; Reilly K; Rodriguez MX; Tohme J; Beeching JR
    J Agric Food Chem; 2000 Nov; 48(11):5522-9. PubMed ID: 11087513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives.
    An F; Chen T; Stéphanie DM; Li K; Li QX; Carvalho LJ; Tomlins K; Li J; Gu B; Chen S
    PLoS One; 2016; 11(3):e0152154. PubMed ID: 27023871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves (Manihot esculenta Crantz) as influenced by cultivar, plant age, and leaf position.
    Chaiareekitwat S; Latif S; Mahayothee B; Khuwijitjaru P; Nagle M; Amawan S; Müller J
    Food Chem; 2022 Mar; 372():131173. PubMed ID: 34601424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in scopoletin concentration in cassava chips from four varieties during storage.
    Gnonlonfin BG; Gbaguidi F; Gbenou JD; Sanni A; Brimer L
    J Sci Food Agric; 2011 Oct; 91(13):2344-7. PubMed ID: 21604276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cassava shrunken-2 homolog MeAPL3 determines storage root starch and dry matter content and modulates storage root postharvest physiological deterioration.
    Beyene G; Chauhan RD; Gehan J; Siritunga D; Taylor N
    Plant Mol Biol; 2022 Jun; 109(3):283-299. PubMed ID: 32270429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and characterization of a novel cassava (Manihot esculenta Crantz) clone with high free sugar content and novel starch.
    Carvalho LJ; de Souza CR; de Mattos Cascardo JC; Junior CB; Campos L
    Plant Mol Biol; 2004 Nov; 56(4):643-59. PubMed ID: 15630625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of cassava (Manihot esculenta Crantz) after recent introduction into a South Pacific Island system: the contribution of sex to the diversification of a clonally propagated crop.
    Sardos J; McKey D; Duval MF; Malapa R; Noyer JL; Lebot V
    Genome; 2008 Nov; 51(11):912-21. PubMed ID: 18956024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaf proteomic analysis in cassava (Manihot esculenta, Crantz) during plant development, from planting of stem cutting to storage root formation.
    Mitprasat M; Roytrakul S; Jiemsup S; Boonseng O; Yokthongwattana K
    Planta; 2011 Jun; 233(6):1209-21. PubMed ID: 21327816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptome and metabolome profiling identify factors potentially involved in pro-vitamin A accumulation in cassava landraces.
    Olayide P; Alexandersson E; Tzfadia O; Lenman M; Gisel A; Stavolone L
    Plant Physiol Biochem; 2023 Jun; 199():107713. PubMed ID: 37126903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in sucrose metabolism patterns affect the early maturation of Cassava sexual tetraploid roots.
    Lai H; Zhou Y; Chen W; Deng Y; Qiu Y; Chen X; Guo J
    BMC Plant Biol; 2022 Dec; 22(1):574. PubMed ID: 36496357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cassava traits and end-user preference: Relating traits to consumer liking, sensory perception, and genetics.
    Bechoff A; Tomlins K; Fliedel G; Becerra Lopez-Lavalle LA; Westby A; Hershey C; Dufour D
    Crit Rev Food Sci Nutr; 2018 Mar; 58(4):547-567. PubMed ID: 27494196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative stress responses during cassava post-harvest physiological deterioration.
    Reilly K; Gómez-Vásquez R; Buschmann H; Tohme J; Beeching JR
    Plant Mol Biol; 2004 Nov; 56(4):625-41. PubMed ID: 15669147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method for rapid and homogenous initiation of post-harvest physiological deterioration in cassava storage roots identifies Indonesian cultivars with improved shelf-life performance.
    Zainuddin IM; Lecart B; Sudarmonowati E; Vanderschuren H
    Plant Methods; 2023 Jan; 19(1):4. PubMed ID: 36653871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava.
    Ren MY; Feng RJ; Shi HR; Lu LF; Yun TY; Peng M; Guan X; Zhang H; Wang JY; Zhang XY; Li CL; Chen YJ; He P; Zhang YD; Xie JH
    PLoS One; 2017; 12(5):e0177621. PubMed ID: 28542282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolomic, enzymatic, and histochemical analyzes of cassava roots during postharvest physiological deterioration.
    Uarrota VG; Maraschin M
    BMC Res Notes; 2015 Nov; 8():648. PubMed ID: 26541143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava.
    Luo S; Ma Q; Zhong Y; Jing J; Wei Z; Zhou W; Lu X; Tian Y; Zhang P
    Plant Mol Biol; 2022 Mar; 108(4-5):429-442. PubMed ID: 34792751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UV-visible scanning spectrophotometry and chemometric analysis as tools for carotenoids analysis in cassava genotypes (Manihot esculenta Crantz).
    Moresco R; Uarrota VG; Pereira A; Tomazzoli MM; Nunes Eda C; Peruch LA; Gazzola J; Costa C; Rocha M; Maraschin M
    J Integr Bioinform; 2015 Oct; 12(4):280. PubMed ID: 26673931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic Analysis of bHLH Transcription Factors in Cassava Uncovers Their Roles in Postharvest Physiological Deterioration and Cyanogenic Glycosides Biosynthesis.
    An F; Xiao X; Chen T; Xue J; Luo X; Ou W; Li K; Cai J; Chen S
    Front Plant Sci; 2022; 13():901128. PubMed ID: 35789698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. WRKY Transcription Factors in Cassava Contribute to Regulation of Tolerance and Susceptibility to Cassava Mosaic Disease through Stress Responses.
    Freeborough W; Gentle N; Rey MEC
    Viruses; 2021 Sep; 13(9):. PubMed ID: 34578401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.