BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37121041)

  • 1. Methylparaben toxicity and its removal by microalgae Chlorella vulgaris and Phaeodactylum tricornutum.
    Chang X; He Y; Song L; Ding J; Ren S; Lv M; Chen L
    J Hazard Mater; 2023 Jul; 454():131528. PubMed ID: 37121041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of various approaches to detect algal culture contamination: a case study of Chlorella sp. contamination in a Phaeodactylum tricornutum culture.
    Grivalský T; Střížek A; Přibyl P; Lukavský J; Čegan R; Hobza R; Hrouzek P
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5189-5200. PubMed ID: 34146137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of parabens from wastewater by Chlorella vulgaris-bacteria co-cultures.
    Sousa H; Sousa CA; Vale F; Santos L; Simões M
    Sci Total Environ; 2023 Aug; 884():163746. PubMed ID: 37121314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability and Safety of Nutrients from the Microalgae
    Neumann U; Derwenskus F; Gille A; Louis S; Schmid-Staiger U; Briviba K; Bischoff SC
    Nutrients; 2018 Jul; 10(8):. PubMed ID: 30049974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal efficiency of sulfamethoxazole by acclimated microalgae: Tolerant mechanism, and transformation products and pathways.
    Zhang Y; Wan J; Li Z; Wu Z; Dang C; Fu J
    Bioresour Technol; 2022 Mar; 347():126461. PubMed ID: 34863845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025.
    Song C; Liu Z; Wang C; Li S; Kitamura Y
    Sci Total Environ; 2020 Jun; 723():138146. PubMed ID: 32222515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the removal efficiency of diisobutyl phthalate by Bacillariophyta, Cyanophyta and Chlorophyta.
    Wang X; Wei J; Zhang X; Chen Q; Lakshmikandan M; Li M
    Sci Total Environ; 2024 Feb; 912():169507. PubMed ID: 38142000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Mechanism of Sulfadimethoxine Biodegradation by
    Li B; Wu D; Li Y; Shi Y; Wang C; Sun J; Song C
    Front Microbiol; 2022; 13():840562. PubMed ID: 35369425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Final amended report on the safety assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in cosmetic products.
    Int J Toxicol; 2008; 27 Suppl 4():1-82. PubMed ID: 19101832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris.
    Fu D; Zhang Q; Fan Z; Qi H; Wang Z; Peng L
    Aquat Toxicol; 2019 Nov; 216():105319. PubMed ID: 31586885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the immobilization on microalgae protective effects and carbamazepine removal by Chlorella vulgaris.
    Liang L; Bai X; Hua Z
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79567-79578. PubMed ID: 35715671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of polystyrene microplastics on levofloxacin removal by microalgae from freshwater aquaculture wastewater.
    Wu X; Wu H; Zhang A; Sekou K; Li Z; Ye J
    J Environ Manage; 2022 Jan; 301():113865. PubMed ID: 34597951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of harvesting on morphological and biochemical characteristics of microalgal biomass harvested by polyacrylamide addition, pH-induced flocculation, and centrifugation.
    Kuzhiumparambil U; Labeeuw L; Commault A; Vu HP; Nguyen LN; Ralph PJ; Nghiem LD
    Bioresour Technol; 2022 Sep; 359():127433. PubMed ID: 35680089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplementation of exogenous phytohormones for enhancing the removal of sulfamethoxazole and the simultaneous accumulation of lipid by Chlorella vulgaris.
    Yang L; Vadiveloo A; Chen AJ; Liu WZ; Chen DZ; Gao F
    Bioresour Technol; 2023 Jun; 378():129002. PubMed ID: 37019415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents.
    Asadi P; Rad HA; Qaderi F
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29473-29489. PubMed ID: 31396874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal and Biodegradation of Nonylphenol by Four Freshwater Microalgae.
    He N; Sun X; Zhong Y; Sun K; Liu W; Duan S
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27983663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sediment-seawater exchange altered adverse effects of ocean acidification towards marine microalgae.
    Jiang S; Xue Y; Wang M; Wang H; Liu L; Dai Y; Liu X; Yue T; Zhao J
    Sci Total Environ; 2023 May; 874():162533. PubMed ID: 36870492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways.
    Kiki C; Rashid A; Wang Y; Li Y; Zeng Q; Yu CP; Sun Q
    J Hazard Mater; 2020 Apr; 387():121985. PubMed ID: 31911384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-toxicological effect of a commercial dye Rhodamine B on freshwater microalgae Chlorella vulgaris.
    Sudarshan S; Bharti VS; Harikrishnan S; Shukla SP; RathiBhuvaneswari G
    Arch Microbiol; 2022 Oct; 204(10):658. PubMed ID: 36183287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emulsifying properties of water-soluble proteins extracted from the microalgae Chlorella sorokiniana and Phaeodactylum tricornutum.
    Ebert S; Grossmann L; Hinrichs J; Weiss J
    Food Funct; 2019 Feb; 10(2):754-764. PubMed ID: 30667441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.