These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37121167)

  • 21. PharmRF: A machine-learning scoring function to identify the best protein-ligand complexes for structure-based pharmacophore screening with high enrichments.
    Kumar SP; Dixit NY; Patel CN; Rawal RM; Pandya HA
    J Comput Chem; 2022 May; 43(12):847-863. PubMed ID: 35301752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods for Virtual Screening of GPCR Targets: Approaches and Challenges.
    Cross JB
    Methods Mol Biol; 2018; 1705():233-264. PubMed ID: 29188566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling.
    Yu W; Lakkaraju SK; Raman EP; MacKerell AD
    J Comput Aided Mol Des; 2014 May; 28(5):491-507. PubMed ID: 24610239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiscale Molecular Modeling in G Protein-Coupled Receptor (GPCR)-Ligand Studies.
    Nakliang P; Lazim R; Chang H; Choi S
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32325877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition.
    Bemister-Buffington J; Wolf AJ; Raschka S; Kuhn LA
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32183371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rough set-based proteochemometrics modeling of G-protein-coupled receptor-ligand interactions.
    Strömbergsson H; Prusis P; Midelfart H; Lapinsh M; Wikberg JE; Komorowski J
    Proteins; 2006 Apr; 63(1):24-34. PubMed ID: 16435365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Introducing structure-based three-dimensional pharmacophore models for accelerating the discovery of selective BRD9 binders.
    Pierri M; Gazzillo E; Chini MG; Ferraro MG; Piccolo M; Maione F; Irace C; Bifulco G; Bruno I; Terracciano S; Lauro G
    Bioorg Chem; 2022 Jan; 118():105480. PubMed ID: 34823196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequential application of ligand and structure based modeling approaches to index chemicals for their hH4R antagonism.
    Pappalardo M; Shachaf N; Basile L; Milardi D; Zeidan M; Raiyn J; Guccione S; Rayan A
    PLoS One; 2014; 9(10):e109340. PubMed ID: 25330207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GPCR-tailored pharmacophore pattern recognition of small molecular ligands.
    von Korff M; Steger M
    J Chem Inf Comput Sci; 2004; 44(3):1137-47. PubMed ID: 15154783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches.
    Jana S; Singh SK
    J Biomol Struct Dyn; 2019 Mar; 37(4):944-965. PubMed ID: 29475408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel approach for efficient pharmacophore-based virtual screening: method and applications.
    Dror O; Schneidman-Duhovny D; Inbar Y; Nussinov R; Wolfson HJ
    J Chem Inf Model; 2009 Oct; 49(10):2333-43. PubMed ID: 19803502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated discovery of GPCR bioactive ligands.
    Raschka S
    Curr Opin Struct Biol; 2019 Apr; 55():17-24. PubMed ID: 30909105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure and dynamics of GPCR oligomers: a new focus in models of cell-signaling mechanisms and drug design.
    Filizola M; Weinstein H
    Curr Opin Drug Discov Devel; 2005 Sep; 8(5):577-84. PubMed ID: 16159019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using ligand-based virtual screening to allosterically stabilize the activated state of a GPCR.
    Taylor CM; Rockweiler NB; Liu C; Rikimaru L; Tunemalm AK; Kisselev OG; Marshall GR
    Chem Biol Drug Des; 2010 Mar; 75(3):325-32. PubMed ID: 20659113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding the horizons of G protein-coupled receptor structure-based ligand discovery and optimization using homology models.
    Cavasotto CN; Palomba D
    Chem Commun (Camb); 2015 Sep; 51(71):13576-94. PubMed ID: 26256645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognition of privileged structures by G-protein coupled receptors.
    Bondensgaard K; Ankersen M; Thøgersen H; Hansen BS; Wulff BS; Bywater RP
    J Med Chem; 2004 Feb; 47(4):888-99. PubMed ID: 14761190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling G protein-coupled receptors and their interactions with ligands.
    Costanzi S
    Curr Opin Struct Biol; 2013 Apr; 23(2):185-90. PubMed ID: 23415855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. G-protein-coupled receptor-focused drug discovery using a target class platform approach.
    Heilker R; Wolff M; Tautermann CS; Bieler M
    Drug Discov Today; 2009 Mar; 14(5-6):231-40. PubMed ID: 19121411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The GPCR crystallography boom: providing an invaluable source of structural information and expanding the scope of homology modeling.
    Costanzi S; Wang K
    Adv Exp Med Biol; 2014; 796():3-13. PubMed ID: 24158798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-Pharmacophore Modeling of Caspase-3 Inhibitors using Crystal, Dock and Flexible Conformation Schemes.
    Kumar SP; Jha PC
    Comb Chem High Throughput Screen; 2018; 21(1):26-40. PubMed ID: 29295689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.