These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 37121370)

  • 21. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering.
    Singh YP; Bandyopadhyay A; Mandal BB
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs.
    Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S
    Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering.
    Bhardwaj N; Sow WT; Devi D; Ng KW; Mandal BB; Cho NJ
    Integr Biol (Camb); 2015 Jan; 7(1):53-63. PubMed ID: 25372050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioessential Inorganic Molecular Wire-Reinforced 3D-Printed Hydrogel Scaffold for Enhanced Bone Regeneration.
    Lee JW; Chae S; Oh S; Kim DH; Kim SH; Kim SJ; Choi JY; Lee JH; Song SY
    Adv Healthc Mater; 2023 Jan; 12(2):e2201665. PubMed ID: 36213983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering of Uniform Epidermal Layers via Sacrificial Gelatin Bioink-Assisted 3D Extrusion Bioprinting of Skin.
    Ahn M; Cho WW; Lee H; Park W; Lee SH; Back JW; Gao Q; Gao G; Cho DW; Kim BS
    Adv Healthc Mater; 2023 Oct; 12(27):e2301015. PubMed ID: 37537366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 3D printed hydrogel to promote human keratinocytes' spheroid-based growth.
    Rocha T; Teixeira AM; Gomes SG; André A; Martins P; Ferreira J; Negrão R
    J Biomed Mater Res B Appl Biomater; 2023 May; 111(5):1089-1099. PubMed ID: 36573459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on Printability Evaluation of Alginate/Silk Fibroin/Collagen Double-Cross-Linked Inks and the Properties of 3D Printed Constructs.
    Feng H; Song Y; Lian X; Zhang S; Bai J; Gan F; Lei Q; Wei Y; Huang D
    ACS Biomater Sci Eng; 2024 Oct; 10(10):6581-6593. PubMed ID: 39321210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dityrosine-inspired photocrosslinking technique for 3D printing of silk fibroin-based composite hydrogel scaffolds.
    Huang Y; Sun G; Lyu L; Li Y; Li D; Fan Q; Yao J; Shao J
    Soft Matter; 2022 May; 18(19):3705-3712. PubMed ID: 35502755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensionally Printed Skin Substitute Using Human Dermal Fibroblasts and Human Epidermal Keratinocytes.
    Patel J; Willis J; Aluri A; Awad S; Smith M; Banker Z; Mitchell M; Macias L; Berry J; King T
    Ann Plast Surg; 2021 Jun; 86(6S Suppl 5):S628-S631. PubMed ID: 34100824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silk fibroin for skin injury repair: Where do things stand?
    Gholipourmalekabadi M; Sapru S; Samadikuchaksaraei A; Reis RL; Kaplan DL; Kundu SC
    Adv Drug Deliv Rev; 2020 Jan; 153():28-53. PubMed ID: 31678360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible-Light-Induced Silk Fibroin Hydrogels with Carbon Quantum Dots as Initiators for 3D Bioprinting Applications.
    Liu S; Ge C; Li Z; Shan J; Chen K; Li X; Liu Y; Zhang X
    ACS Biomater Sci Eng; 2024 Sep; 10(9):5822-5831. PubMed ID: 39169444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual crosslinking silk fibroin/pectin-based bioink development and the application on neural stem/progenitor cells spheroid laden 3D bioprinting.
    Lee HW; Chen KT; Li YE; Yeh YC; Chiang CY; Lee IC
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):131720. PubMed ID: 38677692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of Antibacterial, Osteo-Inductor 3D Printed Aerogel-Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Self-Assembled Silk Fibroin Biopolymer.
    Ng P; Pinho AR; Gomes MC; Demidov Y; Krakor E; Grume D; Herb M; Lê K; Mano J; Mathur S; Maleki H
    Macromol Biosci; 2022 Apr; 22(4):e2100442. PubMed ID: 35029037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Bioprinting of Artificial Skin Substitute with Improved Mechanical Property and Regulated Cell Behavior through Integrating Patterned Nanofibrous Films.
    Bian S; Hu X; Zhu H; Du W; Wang C; Wang L; Hao L; Xiang Y; Meng F; Hu C; Wu Z; Wang J; Pan X; Guan M; Lu WW; Zhao X
    ACS Nano; 2024 Jul; 18(28):18503-18521. PubMed ID: 38941540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration.
    Sanaei K; Zamanian A; Mashayekhan S; Ramezani T
    Iran Biomed J; 2023 Sep; 27(5):280-93. PubMed ID: 37873644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photo-Polymerizable Autologous Growth-Factor Loaded Silk-Based Biomaterial-Inks toward 3D Printing-Based Regeneration of Meniscus Tears.
    Bandyopadhyay A; Ghibhela B; Shome S; Hoque S; Nandi SK; Mandal BB
    Adv Biol (Weinh); 2024 May; 8(5):e2300710. PubMed ID: 38402426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration.
    Kang D; Liu Z; Qian C; Huang J; Zhou Y; Mao X; Qu Q; Liu B; Wang J; Hu Z; Miao Y
    Acta Biomater; 2023 Jul; 165():19-30. PubMed ID: 35288311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Gelatin-sulfonated Silk Composite Scaffold based on 3D Printing Technology Enhances Skin Regeneration by Stimulating Epidermal Growth and Dermal Neovascularization.
    Xiong S; Zhang X; Lu P; Wu Y; Wang Q; Sun H; Heng BC; Bunpetch V; Zhang S; Ouyang H
    Sci Rep; 2017 Jun; 7(1):4288. PubMed ID: 28655891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.